Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
c8731b95
"...resnet50_tensorflow.git" did not exist on "1d8fc5a69092b29a22999f934542a8999f5d50d1"
Commit
c8731b95
authored
Aug 30, 2019
by
jamin
Browse files
update apex fp16 implementation
parent
caf1d116
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
54 additions
and
39 deletions
+54
-39
examples/lm_finetuning/finetune_on_pregenerated.py
examples/lm_finetuning/finetune_on_pregenerated.py
+54
-39
No files found.
examples/lm_finetuning/finetune_on_pregenerated.py
View file @
c8731b95
from
argparse
import
ArgumentParser
from
pathlib
import
Path
import
os
import
torch
import
logging
import
json
import
json
import
logging
import
random
import
random
import
numpy
as
np
from
argparse
import
ArgumentParser
from
collections
import
namedtuple
from
collections
import
namedtuple
from
pathlib
import
Path
from
tempfile
import
TemporaryDirectory
from
tempfile
import
TemporaryDirectory
import
numpy
as
np
import
torch
from
torch.utils.data
import
DataLoader
,
Dataset
,
RandomSampler
from
torch.utils.data
import
DataLoader
,
Dataset
,
RandomSampler
from
torch.utils.data.distributed
import
DistributedSampler
from
torch.utils.data.distributed
import
DistributedSampler
from
tqdm
import
tqdm
from
tqdm
import
tqdm
from
pytorch_transformers
import
WEIGHTS_NAME
,
CONFIG_NAME
from
pytorch_transformers.modeling_bert
import
BertForPreTraining
from
pytorch_transformers.modeling_bert
import
BertForPreTraining
from
pytorch_transformers.tokenization_bert
import
BertTokenizer
from
pytorch_transformers.optimization
import
AdamW
,
WarmupLinearSchedule
from
pytorch_transformers.optimization
import
AdamW
,
WarmupLinearSchedule
from
pytorch_transformers.tokenization_bert
import
BertTokenizer
InputFeatures
=
namedtuple
(
"InputFeatures"
,
"input_ids input_mask segment_ids lm_label_ids is_next"
)
InputFeatures
=
namedtuple
(
"InputFeatures"
,
"input_ids input_mask segment_ids lm_label_ids is_next"
)
...
@@ -72,16 +70,16 @@ class PregeneratedDataset(Dataset):
...
@@ -72,16 +70,16 @@ class PregeneratedDataset(Dataset):
if
reduce_memory
:
if
reduce_memory
:
self
.
temp_dir
=
TemporaryDirectory
()
self
.
temp_dir
=
TemporaryDirectory
()
self
.
working_dir
=
Path
(
self
.
temp_dir
.
name
)
self
.
working_dir
=
Path
(
self
.
temp_dir
.
name
)
input_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'input_ids.memmap'
,
input_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'input_ids.memmap'
,
mode
=
'w+'
,
dtype
=
np
.
int32
,
shape
=
(
num_samples
,
seq_len
))
mode
=
'w+'
,
dtype
=
np
.
int32
,
shape
=
(
num_samples
,
seq_len
))
input_masks
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'input_masks.memmap'
,
input_masks
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'input_masks.memmap'
,
shape
=
(
num_samples
,
seq_len
),
mode
=
'w+'
,
dtype
=
np
.
bool
)
shape
=
(
num_samples
,
seq_len
),
mode
=
'w+'
,
dtype
=
np
.
bool
)
segment_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'segment_ids.memmap'
,
segment_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'segment_ids.memmap'
,
shape
=
(
num_samples
,
seq_len
),
mode
=
'w+'
,
dtype
=
np
.
bool
)
shape
=
(
num_samples
,
seq_len
),
mode
=
'w+'
,
dtype
=
np
.
bool
)
lm_label_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'lm_label_ids.memmap'
,
lm_label_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'lm_label_ids.memmap'
,
shape
=
(
num_samples
,
seq_len
),
mode
=
'w+'
,
dtype
=
np
.
int32
)
shape
=
(
num_samples
,
seq_len
),
mode
=
'w+'
,
dtype
=
np
.
int32
)
lm_label_ids
[:]
=
-
1
lm_label_ids
[:]
=
-
1
is_nexts
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'is_nexts.memmap'
,
is_nexts
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'is_nexts.memmap'
,
shape
=
(
num_samples
,),
mode
=
'w+'
,
dtype
=
np
.
bool
)
shape
=
(
num_samples
,),
mode
=
'w+'
,
dtype
=
np
.
bool
)
else
:
else
:
input_ids
=
np
.
zeros
(
shape
=
(
num_samples
,
seq_len
),
dtype
=
np
.
int32
)
input_ids
=
np
.
zeros
(
shape
=
(
num_samples
,
seq_len
),
dtype
=
np
.
int32
)
...
@@ -125,7 +123,8 @@ def main():
...
@@ -125,7 +123,8 @@ def main():
parser
=
ArgumentParser
()
parser
=
ArgumentParser
()
parser
.
add_argument
(
'--pregenerated_data'
,
type
=
Path
,
required
=
True
)
parser
.
add_argument
(
'--pregenerated_data'
,
type
=
Path
,
required
=
True
)
parser
.
add_argument
(
'--output_dir'
,
type
=
Path
,
required
=
True
)
parser
.
add_argument
(
'--output_dir'
,
type
=
Path
,
required
=
True
)
parser
.
add_argument
(
"--bert_model"
,
type
=
str
,
required
=
True
,
help
=
"Bert pre-trained model selected in the list: bert-base-uncased, "
parser
.
add_argument
(
"--bert_model"
,
type
=
str
,
required
=
True
,
help
=
"Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
)
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
)
parser
.
add_argument
(
"--do_lower_case"
,
action
=
"store_true"
)
parser
.
add_argument
(
"--do_lower_case"
,
action
=
"store_true"
)
parser
.
add_argument
(
"--reduce_memory"
,
action
=
"store_true"
,
parser
.
add_argument
(
"--reduce_memory"
,
action
=
"store_true"
,
...
@@ -235,8 +234,9 @@ def main():
...
@@ -235,8 +234,9 @@ def main():
# Prepare model
# Prepare model
model
=
BertForPreTraining
.
from_pretrained
(
args
.
bert_model
)
model
=
BertForPreTraining
.
from_pretrained
(
args
.
bert_model
)
if
args
.
fp16
:
# We don't need to manually call model.half() following Apex's recommend
model
.
half
()
# if args.fp16:
# model.half()
model
.
to
(
device
)
model
.
to
(
device
)
if
args
.
local_rank
!=
-
1
:
if
args
.
local_rank
!=
-
1
:
try
:
try
:
...
@@ -257,25 +257,36 @@ def main():
...
@@ -257,25 +257,36 @@ def main():
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
]
optimizer
=
AdamW
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
eps
=
args
.
adam_epsilon
)
scheduler
=
WarmupLinearSchedule
(
optimizer
,
warmup_steps
=
args
.
warmup_steps
,
t_total
=
num_train_optimization_steps
)
if
args
.
fp16
:
if
args
.
fp16
:
try
:
try
:
from
apex.optimizers
import
FP16_Optimizer
# from apex.optimizers import FP16_Optimizer
from
apex.optimizers
import
FusedAdam
# from apex.optimizers import FusedAdam
from
apex
import
amp
except
ImportError
:
except
ImportError
:
raise
ImportError
(
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
# This below line of code is the main upgrade of Apex Fp16 implementation. I chose opt_leve="01"
lr
=
args
.
learning_rate
,
# because it's recommended for typical use by Apex. We can make it configured
bias_correction
=
False
,
model
,
optimizer
=
amp
.
initialize
(
model
,
optimizer
,
opt_level
=
"O1"
)
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
# We don't need to use FP16_Optimizer wrapping over FusedAdam as well. Now Apex supports all Pytorch Optimizer
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
# optimizer = FusedAdam(optimizer_grouped_parameters,
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
# lr=args.learning_rate,
else
:
# bias_correction=False,
optimizer
=
AdamW
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
eps
=
args
.
adam_epsilon
)
# max_grad_norm=1.0)
scheduler
=
WarmupLinearSchedule
(
optimizer
,
warmup_steps
=
args
.
warmup_steps
,
t_total
=
num_train_optimization_steps
)
# if args.loss_scale == 0:
# optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
# else:
# optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
# else:
# optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
# scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps)
global_step
=
0
global_step
=
0
logging
.
info
(
"***** Running training *****"
)
logging
.
info
(
"***** Running training *****"
)
...
@@ -304,7 +315,10 @@ def main():
...
@@ -304,7 +315,10 @@ def main():
if
args
.
gradient_accumulation_steps
>
1
:
if
args
.
gradient_accumulation_steps
>
1
:
loss
=
loss
/
args
.
gradient_accumulation_steps
loss
=
loss
/
args
.
gradient_accumulation_steps
if
args
.
fp16
:
if
args
.
fp16
:
optimizer
.
backward
(
loss
)
# I depricate FP16_Optimizer's backward func and replace as Apex document
# optimizer.backward(loss)
with
amp
.
scale_loss
(
loss
,
optimizer
)
as
scaled_loss
:
scaled_loss
.
backward
()
else
:
else
:
loss
.
backward
()
loss
.
backward
()
tr_loss
+=
loss
.
item
()
tr_loss
+=
loss
.
item
()
...
@@ -322,7 +336,8 @@ def main():
...
@@ -322,7 +336,8 @@ def main():
# Save a trained model
# Save a trained model
if
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
:
if
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
:
logging
.
info
(
"** ** * Saving fine-tuned model ** ** * "
)
logging
.
info
(
"** ** * Saving fine-tuned model ** ** * "
)
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Take care of distributed/parallel training
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Take care of distributed/parallel training
model_to_save
.
save_pretrained
(
args
.
output_dir
)
model_to_save
.
save_pretrained
(
args
.
output_dir
)
tokenizer
.
save_pretrained
(
args
.
output_dir
)
tokenizer
.
save_pretrained
(
args
.
output_dir
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment