"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "7ac47bfe69f25fc7381be65870b2f4e5cdb8cb6a"
Commit c84315ec authored by thomwolf's avatar thomwolf
Browse files

model fixes + ipnb fixes

parent 3ff2ec5e
...@@ -12,8 +12,8 @@ ...@@ -12,8 +12,8 @@
"execution_count": 1, "execution_count": 1,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-02T13:05:56.692585Z", "end_time": "2018-11-02T14:09:09.239405Z",
"start_time": "2018-11-02T13:05:55.699169Z" "start_time": "2018-11-02T14:09:08.126668Z"
} }
}, },
"outputs": [], "outputs": [],
...@@ -23,11 +23,11 @@ ...@@ -23,11 +23,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 2,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-02T13:18:23.944585Z", "end_time": "2018-11-02T14:09:09.370511Z",
"start_time": "2018-11-02T13:18:23.821309Z" "start_time": "2018-11-02T14:09:09.242527Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -67,11 +67,11 @@ ...@@ -67,11 +67,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 3,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-02T13:18:24.802620Z", "end_time": "2018-11-02T14:09:12.514617Z",
"start_time": "2018-11-02T13:18:24.764474Z" "start_time": "2018-11-02T14:09:09.372137Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -79,15 +79,15 @@ ...@@ -79,15 +79,15 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"WARNING:tensorflow:Estimator's model_fn (<function model_fn_builder.<locals>.model_fn at 0x128feb7b8>) includes params argument, but params are not passed to Estimator.\n", "WARNING:tensorflow:Estimator's model_fn (<function model_fn_builder.<locals>.model_fn at 0x12b266ae8>) includes params argument, but params are not passed to Estimator.\n",
"WARNING:tensorflow:Using temporary folder as model directory: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpp9hntmfs\n", "WARNING:tensorflow:Using temporary folder as model directory: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmphrjfnoqh\n",
"INFO:tensorflow:Using config: {'_model_dir': '/var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpp9hntmfs', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true\n", "INFO:tensorflow:Using config: {'_model_dir': '/var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmphrjfnoqh', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true\n",
"graph_options {\n", "graph_options {\n",
" rewrite_options {\n", " rewrite_options {\n",
" meta_optimizer_iterations: ONE\n", " meta_optimizer_iterations: ONE\n",
" }\n", " }\n",
"}\n", "}\n",
", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x1263809e8>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=2, num_shards=1, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None), '_cluster': None}\n", ", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x12e2c1160>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=2, num_shards=1, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None), '_cluster': None}\n",
"WARNING:tensorflow:Setting TPUConfig.num_shards==1 is an unsupported behavior. Please fix as soon as possible (leaving num_shards as None.\n", "WARNING:tensorflow:Setting TPUConfig.num_shards==1 is an unsupported behavior. Please fix as soon as possible (leaving num_shards as None.\n",
"INFO:tensorflow:_TPUContext: eval_on_tpu True\n", "INFO:tensorflow:_TPUContext: eval_on_tpu True\n",
"WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.\n" "WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.\n"
...@@ -123,11 +123,11 @@ ...@@ -123,11 +123,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 4,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-02T13:19:20.060587Z", "end_time": "2018-11-02T14:09:17.745970Z",
"start_time": "2018-11-02T13:19:14.804525Z" "start_time": "2018-11-02T14:09:12.516953Z"
} }
}, },
"outputs": [ "outputs": [
...@@ -135,7 +135,7 @@ ...@@ -135,7 +135,7 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"INFO:tensorflow:Could not find trained model in model_dir: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpp9hntmfs, running initialization to predict.\n", "INFO:tensorflow:Could not find trained model in model_dir: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmphrjfnoqh, running initialization to predict.\n",
"INFO:tensorflow:Calling model_fn.\n", "INFO:tensorflow:Calling model_fn.\n",
"INFO:tensorflow:Running infer on CPU\n", "INFO:tensorflow:Running infer on CPU\n",
"INFO:tensorflow:Done calling model_fn.\n", "INFO:tensorflow:Done calling model_fn.\n",
...@@ -154,7 +154,7 @@ ...@@ -154,7 +154,7 @@
" feature = unique_id_to_feature[unique_id]\n", " feature = unique_id_to_feature[unique_id]\n",
" output_json = collections.OrderedDict()\n", " output_json = collections.OrderedDict()\n",
" output_json[\"linex_index\"] = unique_id\n", " output_json[\"linex_index\"] = unique_id\n",
" all_features = []\n", " all_out_features = []\n",
" for (i, token) in enumerate(feature.tokens):\n", " for (i, token) in enumerate(feature.tokens):\n",
" all_layers = []\n", " all_layers = []\n",
" for (j, layer_index) in enumerate(layer_indexes):\n", " for (j, layer_index) in enumerate(layer_indexes):\n",
...@@ -165,75 +165,884 @@ ...@@ -165,75 +165,884 @@
" round(float(x), 6) for x in layer_output[i:(i + 1)].flat\n", " round(float(x), 6) for x in layer_output[i:(i + 1)].flat\n",
" ]\n", " ]\n",
" all_layers.append(layers)\n", " all_layers.append(layers)\n",
" features = collections.OrderedDict()\n", " out_features = collections.OrderedDict()\n",
" features[\"token\"] = token\n", " out_features[\"token\"] = token\n",
" features[\"layers\"] = all_layers\n", " out_features[\"layers\"] = all_layers\n",
" all_features.append(features)\n", " all_out_features.append(out_features)\n",
" output_json[\"features\"] = all_features\n", " output_json[\"features\"] = all_out_features\n",
" all_out.append(output_json)" " all_out.append(output_json)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 32, "execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-02T14:09:17.780532Z",
"start_time": "2018-11-02T14:09:17.748778Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"2\n",
"odict_keys(['linex_index', 'features'])\n",
"14\n"
]
}
],
"source": [
"print(len(all_out))\n",
"print(len(all_out[0]))\n",
"print(all_out[0].keys())\n",
"print(len(all_out[0]['features']))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-02T13:22:39.694206Z", "end_time": "2018-11-02T14:09:17.818968Z",
"start_time": "2018-11-02T13:22:39.663432Z" "start_time": "2018-11-02T14:09:17.782121Z"
} }
}, },
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"14" "[-0.628111,\n",
" 0.193215,\n",
" -0.75185,\n",
" -0.040464,\n",
" -0.875331,\n",
" 0.15654,\n",
" 1.385444,\n",
" 1.066997,\n",
" -0.349549,\n",
" 0.270686]"
] ]
}, },
"execution_count": 32, "execution_count": 6,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"len(all_out)\n", "tensorflow_output = all_out[0]['features'][0]['layers'][0]['values']\n",
"len(all_out[0])\n", "tensorflow_output[:10]"
"all_out[0].keys()\n", ]
"len(all_out[0]['features'])" },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PyTorch code"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 33, "execution_count": 7,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-02T13:23:05.752981Z", "end_time": "2018-11-02T14:09:17.954196Z",
"start_time": "2018-11-02T13:23:05.723891Z" "start_time": "2018-11-02T14:09:17.821115Z"
} }
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"tensorflow_output = all_out[0]['features'][0]['layers'][0]['values']" "from extract_features_pytorch import *"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "code",
"metadata": {}, "execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-02T14:09:19.196475Z",
"start_time": "2018-11-02T14:09:17.956199Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"BertModel(\n",
" (embeddings): BERTEmbeddings(\n",
" (word_embeddings): Embedding(30522, 768)\n",
" (position_embeddings): Embedding(512, 768)\n",
" (token_type_embeddings): Embedding(2, 768)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (encoder): BERTEncoder(\n",
" (layer): ModuleList(\n",
" (0): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (1): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (2): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (3): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (4): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (5): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (6): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (7): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (8): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (9): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (10): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (11): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" )\n",
" )\n",
" (pooler): BERTPooler(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (activation): Tanh()\n",
" )\n",
")"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"# PyTorch code" "init_checkpoint_pt=\"/Users/thomaswolf/Documents/Thomas/Code/HF/BERT/google_models/uncased_L-12_H-768_A-12/pytorch_model.bin\"\n",
"\n",
"device = torch.device(\"cpu\")\n",
"model = BertModel(bert_config)\n",
"model.load_state_dict(torch.load(init_checkpoint_pt, map_location='cpu'))\n",
"model.to(device)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-02T14:09:19.236256Z",
"start_time": "2018-11-02T14:09:19.198407Z"
},
"code_folding": []
},
"outputs": [
{
"data": {
"text/plain": [
"BertModel(\n",
" (embeddings): BERTEmbeddings(\n",
" (word_embeddings): Embedding(30522, 768)\n",
" (position_embeddings): Embedding(512, 768)\n",
" (token_type_embeddings): Embedding(2, 768)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (encoder): BERTEncoder(\n",
" (layer): ModuleList(\n",
" (0): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (1): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (2): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (3): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (4): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (5): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (6): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (7): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (8): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (9): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (10): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (11): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" )\n",
" )\n",
" (pooler): BERTPooler(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (activation): Tanh()\n",
" )\n",
")"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n",
"all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)\n",
"all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)\n",
"\n",
"eval_data = TensorDataset(all_input_ids, all_input_mask, all_example_index)\n",
"eval_sampler = SequentialSampler(eval_data)\n",
"eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1)\n",
"\n",
"model.eval()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 35, "execution_count": 10,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2018-11-02T13:24:27.644785Z", "end_time": "2018-11-02T14:09:19.671994Z",
"start_time": "2018-11-02T13:24:27.611996Z" "start_time": "2018-11-02T14:09:19.239454Z"
} }
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"from extract_features_pytorch import *" "pytorch_all_out = []\n",
"for input_ids, input_mask, example_indices in eval_dataloader:\n",
" input_ids = input_ids.to(device)\n",
" input_mask = input_mask.float().to(device)\n",
"\n",
" all_encoder_layers, _ = model(input_ids, token_type_ids=None, attention_mask=input_mask)\n",
"\n",
" for enc_layers, example_index in zip(all_encoder_layers, example_indices):\n",
" feature = features[example_index.item()]\n",
" unique_id = int(feature.unique_id)\n",
" # feature = unique_id_to_feature[unique_id]\n",
" output_json = collections.OrderedDict()\n",
" output_json[\"linex_index\"] = unique_id\n",
" all_out_features = []\n",
" for (i, token) in enumerate(feature.tokens):\n",
" all_layers = []\n",
" for (j, layer_index) in enumerate(layer_indexes):\n",
" layer_output = enc_layers[int(layer_index)].detach().cpu().numpy()\n",
" layers = collections.OrderedDict()\n",
" layers[\"index\"] = layer_index\n",
" layers[\"values\"] = [\n",
" round(float(x), 6) for x in layer_output[i:(i + 1)].flat\n",
" ]\n",
" all_layers.append(layers)\n",
" out_features = collections.OrderedDict()\n",
" out_features[\"token\"] = token\n",
" out_features[\"layers\"] = all_layers\n",
" all_out_features.append(out_features)\n",
" output_json[\"features\"] = all_out_features\n",
" pytorch_all_out.append(output_json)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-02T14:09:19.706616Z",
"start_time": "2018-11-02T14:09:19.673670Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"2\n",
"odict_keys(['linex_index', 'features'])\n",
"14\n"
]
}
],
"source": [
"print(len(pytorch_all_out))\n",
"print(len(pytorch_all_out[0]))\n",
"print(pytorch_all_out[0].keys())\n",
"print(len(pytorch_all_out[0]['features']))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-02T14:10:28.295669Z",
"start_time": "2018-11-02T14:10:28.263140Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[-0.016153,\n",
" -0.697252,\n",
" -0.298296,\n",
" -0.167194,\n",
" -0.219306,\n",
" 0.061712,\n",
" -0.006953,\n",
" 0.366519,\n",
" -0.031027,\n",
" -0.33547]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pytorch_output = pytorch_all_out[0]['features'][0]['layers'][0]['values']\n",
"pytorch_output[:10]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-02T14:10:34.540457Z",
"start_time": "2018-11-02T14:10:34.510109Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[-0.628111,\n",
" 0.193215,\n",
" -0.75185,\n",
" -0.040464,\n",
" -0.875331,\n",
" 0.15654,\n",
" 1.385444,\n",
" 1.066997,\n",
" -0.349549,\n",
" 0.270686]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tensorflow_output[:10]"
] ]
}, },
{ {
......
...@@ -26,6 +26,7 @@ import json ...@@ -26,6 +26,7 @@ import json
import re import re
import tokenization import tokenization
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
...@@ -251,10 +252,9 @@ def main(): ...@@ -251,10 +252,9 @@ def main():
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) eval_data = TensorDataset(all_input_ids, all_input_mask, all_example_index)
if args.local_rank == -1: if args.local_rank == -1:
eval_sampler = SequentialSampler(eval_data) eval_sampler = SequentialSampler(eval_data)
else: else:
...@@ -263,12 +263,11 @@ def main(): ...@@ -263,12 +263,11 @@ def main():
model.eval() model.eval()
with open(args.output_file, "w", encoding='utf-8') as writer: with open(args.output_file, "w", encoding='utf-8') as writer:
for input_ids, input_mask, segment_ids, example_indices in eval_dataloader: for input_ids, input_mask, example_indices in eval_dataloader:
input_ids = input_ids.to(device) input_ids = input_ids.to(device)
input_mask = input_mask.float().to(device) input_mask = input_mask.float().to(device)
segment_ids = segment_ids.to(device)
all_encoder_layers, _ = model(input_ids, segment_ids, input_mask) all_encoder_layers, _ = model(input_ids, token_type_ids=None, attention_mask=input_mask)
for enc_layers, example_index in zip(all_encoder_layers, example_indices): for enc_layers, example_index in zip(all_encoder_layers, example_indices):
feature = features[example_index.item()] feature = features[example_index.item()]
......
...@@ -377,12 +377,17 @@ class BertModel(nn.Module): ...@@ -377,12 +377,17 @@ class BertModel(nn.Module):
self.encoder = BERTEncoder(config) self.encoder = BERTEncoder(config)
self.pooler = BERTPooler(config) self.pooler = BERTPooler(config)
def forward(self, input_ids, token_type_ids, attention_mask): def forward(self, input_ids, token_type_ids=None, attention_mask=None):
# We create 3D attention mask from a 2D tensor mask. # We create 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, from_seq_length] # Sizes are [batch_size, 1, 1, from_seq_length]
# So we can broadcast to [batch_size, num_heads, to_seq_length, from_seq_length] # So we can broadcast to [batch_size, num_heads, to_seq_length, from_seq_length]
# It's more simple than the triangular masking of causal attention, just need to # It's more simple than the triangular masking of causal attention, just need to
# prepare the broadcast here # prepare the broadcast here
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = (1.0 - attention_mask) * -10000.0 attention_mask = (1.0 - attention_mask) * -10000.0
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment