Unverified Commit c72d7d91 authored by Daniel Stancl's avatar Daniel Stancl Committed by GitHub
Browse files

Add TF implementation of `XGLMModel` (#16543)



* Add TFXGLM models 

* Add todo: self.supports_xla_generation = False
Co-authored-by: default avatarDaniel Stancl <stancld@Daniels-MacBook-Pro.local>
Co-authored-by: default avatarDaniel Stancl <stancld@daniels-mbp.home>
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: default avatarDaniel <daniel.stancl@rossum.ai>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent cecf9f9b
......@@ -312,7 +312,7 @@ Flax), PyTorch, and/or TensorFlow.
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ | | ✅ |
| XGLM | ✅ | ✅ | ✅ | | ✅ |
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
......
......@@ -64,6 +64,16 @@ This model was contributed by [Suraj](https://huggingface.co/valhalla). The orig
[[autodoc]] XGLMForCausalLM
- forward
## TFXGLMModel
[[autodoc]] TFXGLMModel
- call
## TFXGLMForCausalLM
[[autodoc]] TFXGLMForCausalLM
- call
## FlaxXGLMModel
[[autodoc]] FlaxXGLMModel
......
......@@ -2567,6 +2567,14 @@ else:
"TFWav2Vec2PreTrainedModel",
]
)
_import_structure["models.xglm"].extend(
[
"TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXGLMForCausalLM",
"TFXGLMModel",
"TFXGLMPreTrainedModel",
]
)
_import_structure["models.xlm"].extend(
[
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
......@@ -4954,6 +4962,12 @@ if TYPE_CHECKING:
TFWav2Vec2Model,
TFWav2Vec2PreTrainedModel,
)
from .models.xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
from .models.xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
......
......@@ -77,6 +77,7 @@ TF_MODEL_MAPPING_NAMES = OrderedDict(
("vit", "TFViTModel"),
("vit_mae", "TFViTMAEModel"),
("wav2vec2", "TFWav2Vec2Model"),
("xglm", "TFXGLMModel"),
("xlm", "TFXLMModel"),
("xlm-roberta", "TFXLMRobertaModel"),
("xlnet", "TFXLNetModel"),
......@@ -161,6 +162,7 @@ TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("roberta", "TFRobertaForCausalLM"),
("roformer", "TFRoFormerForCausalLM"),
("transfo-xl", "TFTransfoXLLMHeadModel"),
("xglm", "TFXGLMForCausalLM"),
("xlm", "TFXLMWithLMHeadModel"),
("xlnet", "TFXLNetLMHeadModel"),
]
......
......@@ -23,6 +23,7 @@ from ...utils import (
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
......@@ -73,6 +74,20 @@ else:
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_xglm"] = [
"TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXGLMForCausalLM",
"TFXGLMModel",
"TFXGLMPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
......@@ -108,6 +123,19 @@ if TYPE_CHECKING:
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
......
# coding=utf-8
# Copyright 2021 The Fairseq Authors The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 XGLM model."""
import math
import random
from typing import Any, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
# Public API
from ...file_utils import (
DUMMY_INPUTS,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_tf_outputs import TFBaseModelOutputWithPastAndCrossAttentions, TFCausalLMOutputWithCrossAttentions
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSharedEmbeddings,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import logging
from .configuration_xglm import XGLMConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/xglm-564M"
_CONFIG_FOR_DOC = "XGLMConfig"
_TOKENIZER_FOR_DOC = "XGLMTokenizer"
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/xglm-564M",
# See all XGLM models at https://huggingface.co/models?filter=xglm
]
LARGE_NEGATIVE = -1e8
def create_sinusiodal_positions(num_positions: int, embedding_dim: int, padding_idx: Optional[int]) -> tf.Tensor:
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = tf.exp(tf.range(half_dim, dtype=tf.float32) * -emb)
emb = tf.expand_dims(tf.range(num_positions, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0)
emb = tf.reshape(tf.concat([tf.sin(emb), tf.cos(emb)], axis=1), (num_positions, -1))
if embedding_dim % 2 == 1:
# zero pad
emb = tf.concat([emb, tf.zeros((num_positions, 1))], axis=1)
if padding_idx is not None:
_padding_mask = tf.concat(
[
tf.ones((padding_idx, shape_list(emb)[1])),
tf.zeros((1, shape_list(emb)[1])),
tf.ones((shape_list(emb)[0] - padding_idx - 1, shape_list(emb)[1])),
],
axis=0,
)
emb *= _padding_mask
return tf.Variable(emb, trainable=False, name="model.embed_positions.weights")
def _create_position_ids_from_input_ids(
input_ids: tf.Tensor, past_key_values_length: int, padding_idx: Optional[int]
) -> tf.Tensor:
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = tf.where(input_ids != padding_idx, 1, 0)
incremental_indices = (tf.cast(tf.cumsum(mask, axis=1), dtype=mask.dtype) + past_key_values_length) * mask
return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx
def _create_position_ids_from_inputs_embeds(
inputs_embeds: tf.Tensor, past_key_values_length: int, padding_idx: Optional[int]
) -> tf.Tensor:
"""
Args:
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
inputs_embeds: tf.Tensor
Returns: tf.Tensor
"""
input_shape = shape_list(inputs_embeds)[:-1]
sequence_length = input_shape[1]
position_ids = tf.range(padding_idx + 1, sequence_length + padding_idx + 1, dtype=tf.int64)
return tf.broadcast_to(tf.expand_dims(position_ids, axis=0), input_shape) + past_key_values_length
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None, past_key_values_length: int = 0):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->XGLM
class TFXGLMAttention(tf.keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None,
attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
class TFXGLMDecoderLayer(tf.keras.layers.Layer):
def __init__(self, config: XGLMConfig, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFXGLMAttention(
embed_dim=self.embed_dim,
num_heads=config.attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
name="self_attn",
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
if config.add_cross_attention:
self.encoder_attn = TFXGLMAttention(
embed_dim=self.embed_dim,
num_heads=config.attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
name="encoder_attn",
)
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(
epsilon=1e-5, name="encoder_attn_layer_norm"
)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.fc1 = tf.keras.layers.Dense(config.ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer.call
def call(
self,
hidden_states: tf.Tensor,
attention_mask: Optional[tf.Tensor] = None,
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(decoder_attention_heads,)*
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
*(decoder_attention_heads,)*
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
@keras_serializable
class TFXGLMMainLayer(tf.keras.layers.Layer):
config_class = XGLMConfig
def __init__(
self, config: XGLMConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, *inputs, **kwargs: Any
) -> None:
super().__init__(*inputs, **kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = TFSharedEmbeddings(
config.vocab_size, config.d_model, self.padding_idx, name="embed_tokens"
)
self.offset = 2
self._embed_positions_weights = create_sinusiodal_positions(
num_positions=config.max_position_embeddings + self.offset,
embedding_dim=config.d_model,
padding_idx=config.pad_token_id,
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.layers = [TFXGLMDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_layers)]
self.layerdrop = config.layerdrop
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
def get_input_embeddings(self) -> TFSharedEmbeddings:
return self.embed_tokens
def set_input_embeddings(self, value: TFSharedEmbeddings) -> None:
self.embed_tokens = value
def _prepare_decoder_attention_mask(
self,
attention_mask: Optional[tf.Tensor],
input_shape: tf.TensorShape,
past_key_values_length: int,
) -> tf.Tensor:
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask: Optional[tf.Tensor] = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length)
if attention_mask is not None:
expand_attention_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1])
combined_attention_mask = (
expand_attention_mask
if combined_attention_mask is None
else expand_attention_mask + combined_attention_mask
)
return combined_attention_mask
def embed_positions(
self,
input_ids: Optional[TFModelInputType] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values_length: Optional[int] = None,
) -> tf.Tensor:
if input_ids is not None:
position_ids = _create_position_ids_from_input_ids(input_ids, past_key_values_length, self.padding_idx)
else:
position_ids = _create_position_ids_from_inputs_embeds(
inputs_embeds, past_key_values_length, self.padding_idx
)
positions = tf.gather(self._embed_positions_weights, position_ids, axis=0)
return positions
@unpack_inputs
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs: Any,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, (-1, input_shape[-1]))
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
hidden_states = tf.cast(inputs_embeds, dtype=tf.float32) + positions
hidden_states = self.dropout(hidden_states, training=training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
past_key_value=past_key_value,
)
if use_cache:
next_decoder_cache += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_cross_attn,)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class TFXGLMPreTrainedModel(TFPreTrainedModel):
config_class = XGLMConfig
base_model_prefix = "model"
@property
def dummy_inputs(self):
pad_token = 1
input_ids = tf.cast(tf.convert_to_tensor(DUMMY_INPUTS), tf.int32)
dummy_inputs = {
"input_ids": input_ids,
"attention_mask": tf.math.not_equal(input_ids, pad_token),
}
return dummy_inputs
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
XGLM_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using [`tf.keras.Model.fit`] method which currently requires having all the
tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the
first positional argument :
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
</Tip>
Args:
config ([`XGLMConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
XGLM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`XGLMTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of
the decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(num_layers, attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(num_layers, attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.num_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.",
XGLM_START_DOCSTRING,
)
class TFXGLMModel(TFXGLMPreTrainedModel):
"""
Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`TFXGLMDecoderLayer`]
Args:
config: XGLMConfig
embed_tokens: [TFSharedEmbeddings]: output embedding
"""
def __init__(
self, config: XGLMConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, *inputs: Any, **kwargs: Any
) -> None:
super().__init__(config, *inputs, **kwargs)
self.model = TFXGLMMainLayer(config, embed_tokens=embed_tokens, name="model")
@unpack_inputs
@add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs: Any,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def serving_output(self, output):
pkv = tf.convert_to_tensor(output.past_key_values) if self.config.use_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
cross_attns = (
tf.convert_to_tensor(output.cross_attentions)
if self.config.output_attentions and self.config.add_cross_attention
else None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=output.hidden_states,
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
cross_attentions=cross_attns,
)
@add_start_docstrings(
"""
The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
XGLM_START_DOCSTRING,
)
class TFXGLMForCausalLM(TFXGLMPreTrainedModel, TFCausalLanguageModelingLoss):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
r"model.embed_positions.weights",
r"lm_head.weight",
]
_keys_to_ignore_on_save = [
r"model.embed_positions.weights",
]
def __init__(
self, config: XGLMConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, *inputs: Any, **kwargs: Any
) -> None:
super().__init__(config, *inputs, **kwargs)
self.model = TFXGLMMainLayer(config, embed_tokens=embed_tokens, name="model")
self.lm_head = tf.keras.layers.Dense(
config.vocab_size,
use_bias=False,
kernel_initializer=get_initializer(config.init_std),
name="lm_head",
)
# TODO (Joao): investigate why XGLM has numerical issues in XLA generate
self.supports_xla_generation = False
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(self, inputs, past=None, use_cache=None, **kwargs):
# only last token for inputs_ids if past is defined in kwargs
if past:
inputs = tf.expand_dims(inputs[:, -1], -1)
attention_mask = kwargs.get("attention_mask", None)
return {
"input_ids": inputs,
"attention_mask": attention_mask,
"past": past,
"use_cache": use_cache,
}
@unpack_inputs
@add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs: Any,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r"""
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = lm_logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels, shifted_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def serving_output(self, output):
pkv = tf.convert_to_tensor(output.past_key_values) if self.config.use_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
cross_attns = (
tf.convert_to_tensor(output.cross_attentions)
if self.config.output_attentions and self.config.add_cross_attention
else None
)
return TFCausalLMOutputWithCrossAttentions(
loss=output.loss,
logits=output.logits,
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
cross_attentions=cross_attns,
)
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(tf.gather(past_state, beam_idx, axis=0) for past_state in layer_past),)
return reordered_past
......@@ -2270,6 +2270,30 @@ class TFWav2Vec2PreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["tf"])
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFXGLMForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXGLMModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXGLMPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class TFXGLMModelTester:
config_cls = XGLMConfig
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
d_model=32,
num_hidden_layers=5,
num_attention_heads=4,
ffn_dim=37,
activation_function="gelu",
activation_dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = d_model
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.ffn_dim = ffn_dim
self.activation_function = activation_function
self.activation_dropout = activation_dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = None
self.bos_token_id = 0
self.eos_token_id = 2
self.pad_token_id = 1
def get_large_model_config(self):
return XGLMConfig.from_pretrained("facebook/xglm-564M")
def prepare_config_and_inputs(self):
input_ids = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length], self.vocab_size), clip_value_min=0, clip_value_max=3
)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config()
head_mask = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
)
def get_config(self):
return XGLMConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
num_layers=self.num_hidden_layers,
attention_heads=self.num_attention_heads,
ffn_dim=self.ffn_dim,
activation_function=self.activation_function,
activation_dropout=self.activation_dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
use_cache=True,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
return_dict=True,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class TFXGLMModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
all_generative_model_classes = (TFXGLMForCausalLM,) if is_tf_available() else ()
test_onnx = False
test_missing_keys = False
test_pruning = False
def setUp(self):
self.model_tester = TFXGLMModelTester(self)
self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
if model_class in self.all_generative_model_classes:
x = model.get_output_embeddings()
assert isinstance(x, tf.keras.layers.Layer)
name = model.get_bias()
assert name is None
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@slow
def test_batch_generation(self):
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
tokenizer.padding_side = "left"
# use different length sentences to test batching
sentences = [
"Hello, my dog is a little",
"Today, I",
]
inputs = tokenizer(sentences, return_tensors="tf", padding=True)
outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids
output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = (
inputs_non_padded.shape[-1]
- tf.math.reduce_sum(tf.cast(inputs["attention_mask"][-1], dtype=tf.int64)).numpy()
)
inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little bit of a shy one, but he is very friendly",
"Today, I am going to share with you a few of my favorite things",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
@slow
def test_model_from_pretrained(self):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFXGLMModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.")
def test_resize_token_embeddings(self):
super().test_resize_token_embeddings()
@require_tf
class TFXGLMModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_xglm(self, verify_outputs=True):
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
input_ids = tf.convert_to_tensor([[2, 268, 9865]], dtype=tf.int32) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
# fmt: on
output_ids = model.generate(input_ids, do_sample=False, num_beams=1)
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
@slow
def test_xglm_sample(self):
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
tf.random.set_seed(0)
tokenized = tokenizer("Today is a nice day and", return_tensors="tf")
input_ids = tokenized.input_ids
output_ids = model.generate(input_ids, do_sample=True, seed=[7, 0])
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)
EXPECTED_OUTPUT_STR = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
@slow
def test_lm_generate_xglm_left_padding(self):
"""Tests that the generated text is the same, regarless of left padding"""
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
tokenizer.padding_side = "left"
generation_kwargs = {
"bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
"no_repeat_ngram_size": 2,
"do_sample": False,
"repetition_penalty": 1.3,
}
expected_output_string = (
"Today is a beautiful day and I am so glad that we have the opportunity to spend time with"
)
sentences = ["Today is a beautiful day and"]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
# using default length
output_ids = model.generate(**input_ids, **generation_kwargs)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
self.assertEqual(output_strings[0], expected_output_string)
sentences = ["Today is a beautiful day and", "This is a very long input that we absolutely don't care about"]
input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
# longer max length to capture the full length (remember: it is left padded)
output_ids = model.generate(**input_ids, **generation_kwargs, max_length=28)
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
self.assertEqual(output_strings[0], expected_output_string)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment