Commit c683c3d5 authored by thomwolf's avatar thomwolf
Browse files

fix #993

parent 3566d279
...@@ -683,9 +683,10 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel): ...@@ -683,9 +683,10 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2DoubleHeadsModel.from_pretrained('gpt2') model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary tokenizer.add_special_tokens({'cls_token': '[CLS]'}) # Add a [CLS] to the vocabulary (we should train it also!)
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1 mc_token_ids = torch.tensor([input_ids.size(-1), input_ids.size(-1)]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, mc_token_ids) outputs = model(input_ids, mc_token_ids)
lm_prediction_scores, mc_prediction_scores = outputs[:2] lm_prediction_scores, mc_prediction_scores = outputs[:2]
......
...@@ -665,9 +665,10 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel): ...@@ -665,9 +665,10 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt') model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary tokenizer.add_special_tokens({'cls_token': '[CLS]'}) # Add a [CLS] to the vocabulary (we should train it also!)
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1 mc_token_ids = torch.tensor([input_ids.size(-1), input_ids.size(-1)]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, mc_token_ids) outputs = model(input_ids, mc_token_ids)
lm_prediction_scores, mc_prediction_scores = outputs[:2] lm_prediction_scores, mc_prediction_scores = outputs[:2]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment