Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
c4c4c999
Commit
c4c4c999
authored
Mar 04, 2020
by
Patrick von Platen
Browse files
make GPT2 and CTRL shape consistent between torch and TF
parent
2529b2d3
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
30 additions
and
13 deletions
+30
-13
src/transformers/modeling_tf_ctrl.py
src/transformers/modeling_tf_ctrl.py
+2
-2
src/transformers/modeling_tf_gpt2.py
src/transformers/modeling_tf_gpt2.py
+2
-2
src/transformers/modeling_tf_utils.py
src/transformers/modeling_tf_utils.py
+26
-9
No files found.
src/transformers/modeling_tf_ctrl.py
View file @
c4c4c999
...
@@ -104,10 +104,10 @@ class TFMultiHeadAttention(tf.keras.layers.Layer):
...
@@ -104,10 +104,10 @@ class TFMultiHeadAttention(tf.keras.layers.Layer):
k
=
self
.
split_into_heads
(
k
,
batch_size
)
k
=
self
.
split_into_heads
(
k
,
batch_size
)
v
=
self
.
split_into_heads
(
v
,
batch_size
)
v
=
self
.
split_into_heads
(
v
,
batch_size
)
if
layer_past
is
not
None
:
if
layer_past
is
not
None
:
past_key
,
past_value
=
tf
.
unstack
(
layer_past
,
axis
=
1
)
past_key
,
past_value
=
tf
.
unstack
(
layer_past
,
axis
=
0
)
k
=
tf
.
concat
((
past_key
,
k
),
axis
=-
2
)
k
=
tf
.
concat
((
past_key
,
k
),
axis
=-
2
)
v
=
tf
.
concat
((
past_value
,
v
),
axis
=-
2
)
v
=
tf
.
concat
((
past_value
,
v
),
axis
=-
2
)
present
=
tf
.
stack
((
k
,
v
),
axis
=
1
)
present
=
tf
.
stack
((
k
,
v
),
axis
=
0
)
output
=
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
,
attention_mask
,
head_mask
)
output
=
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
,
attention_mask
,
head_mask
)
scaled_attention
=
tf
.
transpose
(
output
[
0
],
perm
=
[
0
,
2
,
1
,
3
])
scaled_attention
=
tf
.
transpose
(
output
[
0
],
perm
=
[
0
,
2
,
1
,
3
])
...
...
src/transformers/modeling_tf_gpt2.py
View file @
c4c4c999
...
@@ -139,10 +139,10 @@ class TFAttention(tf.keras.layers.Layer):
...
@@ -139,10 +139,10 @@ class TFAttention(tf.keras.layers.Layer):
key
=
self
.
split_heads
(
key
)
key
=
self
.
split_heads
(
key
)
value
=
self
.
split_heads
(
value
)
value
=
self
.
split_heads
(
value
)
if
layer_past
is
not
None
:
if
layer_past
is
not
None
:
past_key
,
past_value
=
tf
.
unstack
(
layer_past
,
axis
=
1
)
past_key
,
past_value
=
tf
.
unstack
(
layer_past
,
axis
=
0
)
key
=
tf
.
concat
([
past_key
,
key
],
axis
=-
2
)
key
=
tf
.
concat
([
past_key
,
key
],
axis
=-
2
)
value
=
tf
.
concat
([
past_value
,
value
],
axis
=-
2
)
value
=
tf
.
concat
([
past_value
,
value
],
axis
=-
2
)
present
=
tf
.
stack
([
key
,
value
],
axis
=
1
)
present
=
tf
.
stack
([
key
,
value
],
axis
=
0
)
attn_outputs
=
self
.
_attn
([
query
,
key
,
value
,
attention_mask
,
head_mask
],
training
=
training
)
attn_outputs
=
self
.
_attn
([
query
,
key
,
value
,
attention_mask
,
head_mask
],
training
=
training
)
a
=
attn_outputs
[
0
]
a
=
attn_outputs
[
0
]
...
...
src/transformers/modeling_tf_utils.py
View file @
c4c4c999
...
@@ -658,7 +658,9 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
...
@@ -658,7 +658,9 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
# repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
# repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
if
repetition_penalty
!=
1.0
:
if
repetition_penalty
!=
1.0
:
next_token_logits_penalties
=
_create_next_token_logits_penalties
(
input_ids
,
next_token_logits
,
repetition_penalty
)
next_token_logits_penalties
=
_create_next_token_logits_penalties
(
input_ids
,
next_token_logits
,
repetition_penalty
)
next_token_logits
=
tf
.
math
.
multiply
(
next_token_logits
,
next_token_logits_penalties
)
next_token_logits
=
tf
.
math
.
multiply
(
next_token_logits
,
next_token_logits_penalties
)
if
do_sample
:
if
do_sample
:
...
@@ -779,7 +781,9 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
...
@@ -779,7 +781,9 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
# repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
# repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
if
repetition_penalty
!=
1.0
:
if
repetition_penalty
!=
1.0
:
next_token_logits_penalties
=
_create_next_token_logits_penalties
(
input_ids
,
next_token_logits
,
repetition_penalty
)
next_token_logits_penalties
=
_create_next_token_logits_penalties
(
input_ids
,
next_token_logits
,
repetition_penalty
)
next_token_logits
=
tf
.
math
.
multiply
(
next_token_logits
,
next_token_logits_penalties
)
next_token_logits
=
tf
.
math
.
multiply
(
next_token_logits
,
next_token_logits_penalties
)
if
do_sample
:
if
do_sample
:
...
@@ -791,11 +795,15 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
...
@@ -791,11 +795,15 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
next_token_logits
,
top_k
=
top_k
,
top_p
=
top_p
,
min_tokens_to_keep
=
2
next_token_logits
,
top_k
=
top_k
,
top_p
=
top_p
,
min_tokens_to_keep
=
2
)
# (batch_size * num_beams, vocab_size)
)
# (batch_size * num_beams, vocab_size)
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search)
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search)
next_tokens
=
tf
.
random
.
categorical
(
next_token_logits
,
dtype
=
tf
.
int32
,
num_samples
=
2
)
# (batch_size * num_beams, vocab_size)
next_tokens
=
tf
.
random
.
categorical
(
next_token_logits
,
dtype
=
tf
.
int32
,
num_samples
=
2
)
# (batch_size * num_beams, vocab_size)
# Compute next scores
# Compute next scores
scores
=
tf
.
nn
.
log_softmax
(
next_token_logits
,
axis
=-
1
)
# (batch_size * num_beams, vocab_size)
scores
=
tf
.
nn
.
log_softmax
(
next_token_logits
,
axis
=-
1
)
# (batch_size * num_beams, vocab_size)
_scores
=
tf
.
gather
(
scores
,
next_tokens
,
batch_dims
=
1
)
# (batch_size * num_beams, 2)
_scores
=
tf
.
gather
(
scores
,
next_tokens
,
batch_dims
=
1
)
# (batch_size * num_beams, 2)
next_scores
=
_scores
+
tf
.
broadcast_to
(
beam_scores
[:,
None
],
(
batch_size
*
num_beams
,
2
))
# (batch_size * num_beams, 2)
next_scores
=
_scores
+
tf
.
broadcast_to
(
beam_scores
[:,
None
],
(
batch_size
*
num_beams
,
2
)
)
# (batch_size * num_beams, 2)
# Match shape of greedy beam search
# Match shape of greedy beam search
next_tokens
=
tf
.
reshape
(
next_tokens
,
(
batch_size
,
2
*
num_beams
))
# (batch_size, 2 * num_beams)
next_tokens
=
tf
.
reshape
(
next_tokens
,
(
batch_size
,
2
*
num_beams
))
# (batch_size, 2 * num_beams)
next_scores
=
tf
.
reshape
(
next_scores
,
(
batch_size
,
2
*
num_beams
))
# (batch_size, 2 * num_beams)
next_scores
=
tf
.
reshape
(
next_scores
,
(
batch_size
,
2
*
num_beams
))
# (batch_size, 2 * num_beams)
...
@@ -804,10 +812,14 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
...
@@ -804,10 +812,14 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
scores
=
tf
.
nn
.
log_softmax
(
next_token_logits
,
axis
=-
1
)
# (batch_size * num_beams, vocab_size)
scores
=
tf
.
nn
.
log_softmax
(
next_token_logits
,
axis
=-
1
)
# (batch_size * num_beams, vocab_size)
assert
shape_list
(
scores
)
==
[
batch_size
*
num_beams
,
vocab_size
]
assert
shape_list
(
scores
)
==
[
batch_size
*
num_beams
,
vocab_size
]
# Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product)
# Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product)
next_scores
=
scores
+
tf
.
broadcast_to
(
beam_scores
[:,
None
],
(
batch_size
*
num_beams
,
vocab_size
))
# (batch_size * num_beams, vocab_size)
next_scores
=
scores
+
tf
.
broadcast_to
(
beam_scores
[:,
None
],
(
batch_size
*
num_beams
,
vocab_size
)
)
# (batch_size * num_beams, vocab_size)
# re-organize to group the beam together (we are keeping top hypothesis accross beams)
# re-organize to group the beam together (we are keeping top hypothesis accross beams)
next_scores
=
tf
.
reshape
(
next_scores
,
(
batch_size
,
num_beams
*
vocab_size
))
# (batch_size, num_beams * vocab_size)
next_scores
=
tf
.
reshape
(
next_scores
,
(
batch_size
,
num_beams
*
vocab_size
)
)
# (batch_size, num_beams * vocab_size)
next_scores
,
next_tokens
=
tf
.
math
.
top_k
(
next_scores
,
2
*
num_beams
,
sorted
=
True
)
next_scores
,
next_tokens
=
tf
.
math
.
top_k
(
next_scores
,
2
*
num_beams
,
sorted
=
True
)
assert
shape_list
(
next_scores
)
==
shape_list
(
next_tokens
)
==
[
batch_size
,
2
*
num_beams
]
assert
shape_list
(
next_scores
)
==
shape_list
(
next_tokens
)
==
[
batch_size
,
2
*
num_beams
]
...
@@ -909,7 +921,9 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
...
@@ -909,7 +921,9 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
best_hyp
=
sorted_hyps
.
pop
()[
1
]
best_hyp
=
sorted_hyps
.
pop
()[
1
]
sent_lengths_list
.
append
(
len
(
best_hyp
))
sent_lengths_list
.
append
(
len
(
best_hyp
))
best
.
append
(
best_hyp
)
best
.
append
(
best_hyp
)
assert
output_batch_size
==
len
(
best
),
"Output batch size {} must match output beam hypotheses {}"
.
format
(
output_batch_size
,
len
(
best
))
assert
output_batch_size
==
len
(
best
),
"Output batch size {} must match output beam hypotheses {}"
.
format
(
output_batch_size
,
len
(
best
)
)
sent_lengths
=
tf
.
convert_to_tensor
(
sent_lengths_list
,
dtype
=
tf
.
int32
)
sent_lengths
=
tf
.
convert_to_tensor
(
sent_lengths_list
,
dtype
=
tf
.
int32
)
...
@@ -925,7 +939,11 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
...
@@ -925,7 +939,11 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
decoded_hypo
=
tf
.
concat
([
hypo
,
padding
],
axis
=
0
)
decoded_hypo
=
tf
.
concat
([
hypo
,
padding
],
axis
=
0
)
if
sent_lengths
[
i
]
<
max_length
:
if
sent_lengths
[
i
]
<
max_length
:
decoded_hypo
=
tf
.
where
(
tf
.
range
(
max_length
)
==
sent_lengths
[
i
],
eos_token_ids
[
0
]
*
tf
.
ones
((
sent_max_len
,),
dtype
=
tf
.
int32
),
decoded_hypo
)
decoded_hypo
=
tf
.
where
(
tf
.
range
(
max_length
)
==
sent_lengths
[
i
],
eos_token_ids
[
0
]
*
tf
.
ones
((
sent_max_len
,),
dtype
=
tf
.
int32
),
decoded_hypo
,
)
decoded_list
.
append
(
decoded_hypo
)
decoded_list
.
append
(
decoded_hypo
)
decoded
=
tf
.
stack
(
decoded_list
)
decoded
=
tf
.
stack
(
decoded_list
)
else
:
else
:
...
@@ -942,7 +960,6 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
...
@@ -942,7 +960,6 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
# get the correct batch idx from layer past batch dim
# get the correct batch idx from layer past batch dim
# batch dim of `past` and `mems` is at 2nd position
# batch dim of `past` and `mems` is at 2nd position
reordered_layer_past
=
[
tf
.
identity
(
tf
.
expand_dims
(
layer_past
[:,
i
],
1
))
for
i
in
beam_idx
]
reordered_layer_past
=
[
tf
.
identity
(
tf
.
expand_dims
(
layer_past
[:,
i
],
1
))
for
i
in
beam_idx
]
# TODO: check whether it is an error that TF past.shape != Torch past.shape
reordered_layer_past
=
tf
.
concat
(
reordered_layer_past
,
axis
=
1
)
reordered_layer_past
=
tf
.
concat
(
reordered_layer_past
,
axis
=
1
)
# check that shape matches
# check that shape matches
assert
shape_list
(
reordered_layer_past
)
==
shape_list
(
layer_past
)
assert
shape_list
(
reordered_layer_past
)
==
shape_list
(
layer_past
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment