Unverified Commit c468a87a authored by Kamal Raj's avatar Kamal Raj Committed by GitHub
Browse files

Tapas tf (#13393)

* TF Tapas first commit

* updated docs

* updated logger message

* updated pytorch weight conversion
script to support scalar array

* added use_cache to tapas model config to
work properly with tf input_processing

* 1. rm embeddings_sum
2. added # Copied
3. + TFTapasMLMHead
4. and lot other small fixes

* updated docs

* + test for tapas

* updated testing_utils to check
is_tensorflow_probability_available

* converted model logits post processing using
numpy to work with both PT and TF models

* + TFAutoModelForTableQuestionAnswering

* added TF support

* added test for
TFAutoModelForTableQuestionAnswering

* added test for
TFAutoModelForTableQuestionAnswering pipeline

* updated auto model docs

* fixed typo in import

* added tensorflow_probability to run tests

* updated MLM head

* updated tapas.rst with TF  model docs

* fixed optimizer import in docs

* updated convert to np
data from pt model is not
`transformers.tokenization_utils_base.BatchEncoding`
after pipeline upgrade

* updated pipeline:
1. with torch.no_gard removed, pipeline forward handles
2. token_type_ids converted to numpy

* updated docs.

* removed `use_cache` from config

* removed floats_tensor

* updated code comment

* updated Copyright Year and
logits_aggregation Optional

* updated docs and comments

* updated docstring

* fixed model weight loading

* make fixup

* fix indentation

* added tf slow pipeline test

* pip upgrade

* upgrade python to 3.7

* removed from_pt from tests

* revert commit f18cfa9
parent 6fc38adf
...@@ -65,7 +65,7 @@ jobs: ...@@ -65,7 +65,7 @@ jobs:
run_tests_torch_and_tf: run_tests_torch_and_tf:
working_directory: ~/transformers working_directory: ~/transformers
docker: docker:
- image: circleci/python:3.6 - image: circleci/python:3.7
environment: environment:
OMP_NUM_THREADS: 1 OMP_NUM_THREADS: 1
RUN_PT_TF_CROSS_TESTS: yes RUN_PT_TF_CROSS_TESTS: yes
...@@ -82,6 +82,7 @@ jobs: ...@@ -82,6 +82,7 @@ jobs:
- run: pip install --upgrade pip - run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision] - run: pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.0+cpu.html - run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.0+cpu.html
- run: pip install tensorflow_probability
- save_cache: - save_cache:
key: v0.4-{{ checksum "setup.py" }} key: v0.4-{{ checksum "setup.py" }}
paths: paths:
...@@ -118,6 +119,7 @@ jobs: ...@@ -118,6 +119,7 @@ jobs:
- run: pip install --upgrade pip - run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision] - run: pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.0+cpu.html - run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.0+cpu.html
- run: pip install tensorflow_probability
- save_cache: - save_cache:
key: v0.4-{{ checksum "setup.py" }} key: v0.4-{{ checksum "setup.py" }}
paths: paths:
...@@ -278,6 +280,7 @@ jobs: ...@@ -278,6 +280,7 @@ jobs:
- v0.4-{{ checksum "setup.py" }} - v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip - run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision] - run: pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]
- run: pip install tensorflow_probability
- save_cache: - save_cache:
key: v0.4-tf-{{ checksum "setup.py" }} key: v0.4-tf-{{ checksum "setup.py" }}
paths: paths:
...@@ -311,6 +314,7 @@ jobs: ...@@ -311,6 +314,7 @@ jobs:
- v0.4-{{ checksum "setup.py" }} - v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip - run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision] - run: pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]
- run: pip install tensorflow_probability
- save_cache: - save_cache:
key: v0.4-tf-{{ checksum "setup.py" }} key: v0.4-tf-{{ checksum "setup.py" }}
paths: paths:
...@@ -468,6 +472,7 @@ jobs: ...@@ -468,6 +472,7 @@ jobs:
- v0.4-{{ checksum "setup.py" }} - v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip - run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,testing,sentencepiece] - run: pip install .[sklearn,tf-cpu,testing,sentencepiece]
- run: pip install tensorflow_probability
- save_cache: - save_cache:
key: v0.4-tf-{{ checksum "setup.py" }} key: v0.4-tf-{{ checksum "setup.py" }}
paths: paths:
...@@ -502,6 +507,7 @@ jobs: ...@@ -502,6 +507,7 @@ jobs:
- v0.4-{{ checksum "setup.py" }} - v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip - run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,testing,sentencepiece] - run: pip install .[sklearn,tf-cpu,testing,sentencepiece]
- run: pip install tensorflow_probability
- save_cache: - save_cache:
key: v0.4-tf-{{ checksum "setup.py" }} key: v0.4-tf-{{ checksum "setup.py" }}
paths: paths:
......
...@@ -499,7 +499,7 @@ Flax), PyTorch, and/or TensorFlow. ...@@ -499,7 +499,7 @@ Flax), PyTorch, and/or TensorFlow.
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ | | T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| TAPAS | ✅ | ❌ | ✅ | | ❌ | | TAPAS | ✅ | ❌ | ✅ | | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ | | Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
......
...@@ -265,6 +265,13 @@ TFAutoModelForMultipleChoice ...@@ -265,6 +265,13 @@ TFAutoModelForMultipleChoice
:members: :members:
TFAutoModelForTableQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFAutoModelForTableQuestionAnswering
:members:
TFAutoModelForTokenClassification TFAutoModelForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
......
...@@ -49,7 +49,8 @@ entailment (a binary classification task). For more details, see their follow-up ...@@ -49,7 +49,8 @@ entailment (a binary classification task). For more details, see their follow-up
intermediate pre-training <https://www.aclweb.org/anthology/2020.findings-emnlp.27/>`__ by Julian Martin Eisenschlos, intermediate pre-training <https://www.aclweb.org/anthology/2020.findings-emnlp.27/>`__ by Julian Martin Eisenschlos,
Syrine Krichene and Thomas Müller. Syrine Krichene and Thomas Müller.
This model was contributed by `nielsr <https://huggingface.co/nielsr>`__. The original code can be found `here This model was contributed by `nielsr <https://huggingface.co/nielsr>`__. The Tensorflow version of this model was
contributed by `kamalkraj <https://huggingface.co/kamalkraj>`__. The original code can be found `here
<https://github.com/google-research/tapas>`__. <https://github.com/google-research/tapas>`__.
Tips: Tips:
...@@ -130,6 +131,24 @@ for your environment): ...@@ -130,6 +131,24 @@ for your environment):
>>> config = TapasConfig('google-base-finetuned-wikisql-supervised') >>> config = TapasConfig('google-base-finetuned-wikisql-supervised')
>>> model = TapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config) >>> model = TapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config)
In TensorFlow, this can be done as follows (make sure to have installed the `tensorflow_probability dependency
<https://github.com/tensorflow/probability`>__ for your environment):
.. code-block::
>>> from transformers import TapasConfig, TFTapasForQuestionAnswering
>>> # for example, the base sized model with default SQA configuration
>>> model = TFTapasForQuestionAnswering.from_pretrained('google/tapas-base')
>>> # or, the base sized model with WTQ configuration
>>> config = TapasConfig.from_pretrained('google/tapas-base-finetuned-wtq')
>>> model = TFTapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config)
>>> # or, the base sized model with WikiSQL configuration
>>> config = TapasConfig('google-base-finetuned-wikisql-supervised')
>>> model = TFTapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config)
Of course, you don't necessarily have to follow one of these three ways in which TAPAS was fine-tuned. You can also Of course, you don't necessarily have to follow one of these three ways in which TAPAS was fine-tuned. You can also
experiment by defining any hyperparameters you want when initializing :class:`~transformers.TapasConfig`, and then experiment by defining any hyperparameters you want when initializing :class:`~transformers.TapasConfig`, and then
...@@ -142,10 +161,21 @@ way. Here's an example: ...@@ -142,10 +161,21 @@ way. Here's an example:
>>> from transformers import TapasConfig, TapasForQuestionAnswering >>> from transformers import TapasConfig, TapasForQuestionAnswering
>>> # you can initialize the classification heads any way you want (see docs of TapasConfig) >>> # you can initialize the classification heads any way you want (see docs of TapasConfig)
>>> config = TapasConfig(num_aggregation_labels=3, average_logits_per_cell=True, select_one_column=False) >>> config = TapasConfig(num_aggregation_labels=3, average_logits_per_cell=True)
>>> # initializing the pre-trained base sized model with our custom classification heads >>> # initializing the pre-trained base sized model with our custom classification heads
>>> model = TapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config) >>> model = TapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config)
And here is the equivalent code for TensorFlow:
.. code-block::
>>> from transformers import TapasConfig, TFTapasForQuestionAnswering
>>> # you can initialize the classification heads any way you want (see docs of TapasConfig)
>>> config = TapasConfig(num_aggregation_labels=3, average_logits_per_cell=True)
>>> # initializing the pre-trained base sized model with our custom classification heads
>>> model = TFTapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config)
What you can also do is start from an already fine-tuned checkpoint. A note here is that the already fine-tuned What you can also do is start from an already fine-tuned checkpoint. A note here is that the already fine-tuned
checkpoint on WTQ has some issues due to the L2-loss which is somewhat brittle. See `here checkpoint on WTQ has some issues due to the L2-loss which is somewhat brittle. See `here
<https://github.com/google-research/tapas/issues/91#issuecomment-735719340>`__ for more info. <https://github.com/google-research/tapas/issues/91#issuecomment-735719340>`__ for more info.
...@@ -180,12 +210,13 @@ SQA format. The author explains this `here ...@@ -180,12 +210,13 @@ SQA format. The author explains this `here
are not perfect (the ``answer_coordinates`` and ``float_answer`` fields are populated based on the ``answer_text``), are not perfect (the ``answer_coordinates`` and ``float_answer`` fields are populated based on the ``answer_text``),
meaning that WTQ and WikiSQL results could actually be improved. meaning that WTQ and WikiSQL results could actually be improved.
**STEP 3: Convert your data into PyTorch tensors using TapasTokenizer** **STEP 3: Convert your data into PyTorch/TensorFlow tensors using TapasTokenizer**
Third, given that you've prepared your data in this TSV/CSV format (and corresponding CSV files containing the tabular Third, given that you've prepared your data in this TSV/CSV format (and corresponding CSV files containing the tabular
data), you can then use :class:`~transformers.TapasTokenizer` to convert table-question pairs into :obj:`input_ids`, data), you can then use :class:`~transformers.TapasTokenizer` to convert table-question pairs into :obj:`input_ids`,
:obj:`attention_mask`, :obj:`token_type_ids` and so on. Again, based on which of the three cases you picked above, :obj:`attention_mask`, :obj:`token_type_ids` and so on. Again, based on which of the three cases you picked above,
:class:`~transformers.TapasForQuestionAnswering` requires different inputs to be fine-tuned: :class:`~transformers.TapasForQuestionAnswering`/:class:`~transformers.TFTapasForQuestionAnswering` requires different
inputs to be fine-tuned:
+------------------------------------+----------------------------------------------------------------------------------------------+ +------------------------------------+----------------------------------------------------------------------------------------------+
| **Task** | **Required inputs** | | **Task** | **Required inputs** |
...@@ -220,6 +251,8 @@ are already in the TSV file of step 2. Here's an example: ...@@ -220,6 +251,8 @@ are already in the TSV file of step 2. Here's an example:
{'input_ids': tensor([[ ... ]]), 'attention_mask': tensor([[...]]), 'token_type_ids': tensor([[[...]]]), {'input_ids': tensor([[ ... ]]), 'attention_mask': tensor([[...]]), 'token_type_ids': tensor([[[...]]]),
'numeric_values': tensor([[ ... ]]), 'numeric_values_scale: tensor([[ ... ]]), labels: tensor([[ ... ]])} 'numeric_values': tensor([[ ... ]]), 'numeric_values_scale: tensor([[ ... ]]), labels: tensor([[ ... ]])}
Set `return_tensors='tf'` when calling the tokenizer to prepare data for the TF models.
Note that :class:`~transformers.TapasTokenizer` expects the data of the table to be **text-only**. You can use Note that :class:`~transformers.TapasTokenizer` expects the data of the table to be **text-only**. You can use
``.astype(str)`` on a dataframe to turn it into text-only data. Of course, this only shows how to encode a single ``.astype(str)`` on a dataframe to turn it into text-only data. Of course, this only shows how to encode a single
training example. It is advised to create a PyTorch dataset and a corresponding dataloader: training example. It is advised to create a PyTorch dataset and a corresponding dataloader:
...@@ -261,15 +294,67 @@ training example. It is advised to create a PyTorch dataset and a corresponding ...@@ -261,15 +294,67 @@ training example. It is advised to create a PyTorch dataset and a corresponding
>>> train_dataset = TableDataset(data, tokenizer) >>> train_dataset = TableDataset(data, tokenizer)
>>> train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=32) >>> train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=32)
And here is the equivalent code for TensorFlow:
.. code-block::
>>> import tensorflow as tf
>>> import pandas as pd
>>> tsv_path = "your_path_to_the_tsv_file"
>>> table_csv_path = "your_path_to_a_directory_containing_all_csv_files"
>>> class TableDataset:
... def __init__(self, data, tokenizer):
... self.data = data
... self.tokenizer = tokenizer
...
... def __iter__(self):
... for idx in range(self.__len__()):
... item = self.data.iloc[idx]
... table = pd.read_csv(table_csv_path + item.table_file).astype(str) # be sure to make your table data text only
... encoding = self.tokenizer(table=table,
... queries=item.question,
... answer_coordinates=item.answer_coordinates,
... answer_text=item.answer_text,
... truncation=True,
... padding="max_length",
... return_tensors="tf"
... )
... # remove the batch dimension which the tokenizer adds by default
... encoding = {key: tf.squeeze(val,0) for key, val in encoding.items()}
... # add the float_answer which is also required (weak supervision for aggregation case)
... encoding["float_answer"] = tf.convert_to_tensor(item.float_answer,dtype=tf.float32)
... yield encoding['input_ids'], encoding['attention_mask'], encoding['numeric_values'], \
... encoding['numeric_values_scale'], encoding['token_type_ids'], encoding['labels'], \
... encoding['float_answer']
...
... def __len__(self):
... return len(self.data)
>>> data = pd.read_csv(tsv_path, sep='\t')
>>> train_dataset = TableDataset(data, tokenizer)
>>> output_signature = (
... tf.TensorSpec(shape=(512,), dtype=tf.int32),
... tf.TensorSpec(shape=(512,), dtype=tf.int32),
... tf.TensorSpec(shape=(512,), dtype=tf.float32),
... tf.TensorSpec(shape=(512,), dtype=tf.float32),
... tf.TensorSpec(shape=(512,7), dtype=tf.int32),
... tf.TensorSpec(shape=(512,), dtype=tf.int32),
... tf.TensorSpec(shape=(512,), dtype=tf.float32))
>>> train_dataloader = tf.data.Dataset.from_generator(train_dataset, output_signature=output_signature).batch(32)
Note that here, we encode each table-question pair independently. This is fine as long as your dataset is **not Note that here, we encode each table-question pair independently. This is fine as long as your dataset is **not
conversational**. In case your dataset involves conversational questions (such as in SQA), then you should first group conversational**. In case your dataset involves conversational questions (such as in SQA), then you should first group
together the ``queries``, ``answer_coordinates`` and ``answer_text`` per table (in the order of their ``position`` together the ``queries``, ``answer_coordinates`` and ``answer_text`` per table (in the order of their ``position``
index) and batch encode each table with its questions. This will make sure that the ``prev_labels`` token types (see index) and batch encode each table with its questions. This will make sure that the ``prev_labels`` token types (see
docs of :class:`~transformers.TapasTokenizer`) are set correctly. See `this notebook docs of :class:`~transformers.TapasTokenizer`) are set correctly. See `this notebook
<https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb>`__ <https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb>`__
for more info. for more info. See `this notebook
<https://github.com/kamalkraj/Tapas-Tutorial/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb>`__
for more info regarding using the TensorFlow model.
**STEP 4: Train (fine-tune) TapasForQuestionAnswering** **STEP 4: Train (fine-tune) TapasForQuestionAnswering/TFTapasForQuestionAnswering**
You can then fine-tune :class:`~transformers.TapasForQuestionAnswering` using native PyTorch as follows (shown here for You can then fine-tune :class:`~transformers.TapasForQuestionAnswering` using native PyTorch as follows (shown here for
the weak supervision for aggregation case): the weak supervision for aggregation case):
...@@ -316,6 +401,52 @@ the weak supervision for aggregation case): ...@@ -316,6 +401,52 @@ the weak supervision for aggregation case):
... loss.backward() ... loss.backward()
... optimizer.step() ... optimizer.step()
Equivalently, fine-tuning :class:`~transformers.TFTapasForQuestionAnswering` in native TensorFlow can be done as
follows (shown here for the weak supervision for aggregation case):
.. code-block::
>>> import tensorflow as tf
>>> from transformers import TapasConfig, TFTapasForQuestionAnswering
>>> # this is the default WTQ configuration
>>> config = TapasConfig(
... num_aggregation_labels = 4,
... use_answer_as_supervision = True,
... answer_loss_cutoff = 0.664694,
... cell_selection_preference = 0.207951,
... huber_loss_delta = 0.121194,
... init_cell_selection_weights_to_zero = True,
... select_one_column = True,
... allow_empty_column_selection = False,
... temperature = 0.0352513,
... )
>>> model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base", config=config)
>>> optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
>>> for epoch in range(2): # loop over the dataset multiple times
... for idx, batch in enumerate(train_dataloader):
... # get the inputs;
... input_ids = batch[0]
... attention_mask = batch[1]
... token_type_ids = batch[4]
... labels = batch[-1]
... numeric_values = batch[2]
... numeric_values_scale = batch[3]
... float_answer = batch[6]
... # forward + backward + optimize
... with tf.GradientTape() as tape:
... outputs = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids,
... labels=labels, numeric_values=numeric_values, numeric_values_scale=numeric_values_scale,
... float_answer=float_answer )
... grads = tape.gradient(outputs.loss, model.trainable_weights)
... optimizer.apply_gradients(zip(grads, model.trainable_weights))
Usage: inference Usage: inference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...@@ -380,10 +511,68 @@ of that: ...@@ -380,10 +511,68 @@ of that:
What is the total number of movies? What is the total number of movies?
Predicted answer: SUM > 87, 53, 69 Predicted answer: SUM > 87, 53, 69
And here is the equivalent code for TensorFlow:
.. code-block::
>>> from transformers import TapasTokenizer, TFTapasForQuestionAnswering
>>> import pandas as pd
>>> model_name = 'google/tapas-base-finetuned-wtq'
>>> model = TFTapasForQuestionAnswering.from_pretrained(model_name)
>>> tokenizer = TapasTokenizer.from_pretrained(model_name)
>>> data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]}
>>> queries = ["What is the name of the first actor?", "How many movies has George Clooney played in?", "What is the total number of movies?"]
>>> table = pd.DataFrame.from_dict(data)
>>> inputs = tokenizer(table=table, queries=queries, padding='max_length', return_tensors="tf")
>>> outputs = model(**inputs)
>>> predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
... inputs,
... outputs.logits,
... outputs.logits_aggregation
... )
>>> # let's print out the results:
>>> id2aggregation = {0: "NONE", 1: "SUM", 2: "AVERAGE", 3:"COUNT"}
>>> aggregation_predictions_string = [id2aggregation[x] for x in predicted_aggregation_indices]
>>> answers = []
>>> for coordinates in predicted_answer_coordinates:
... if len(coordinates) == 1:
... # only a single cell:
... answers.append(table.iat[coordinates[0]])
... else:
... # multiple cells
... cell_values = []
... for coordinate in coordinates:
... cell_values.append(table.iat[coordinate])
... answers.append(", ".join(cell_values))
>>> display(table)
>>> print("")
>>> for query, answer, predicted_agg in zip(queries, answers, aggregation_predictions_string):
... print(query)
... if predicted_agg == "NONE":
... print("Predicted answer: " + answer)
... else:
... print("Predicted answer: " + predicted_agg + " > " + answer)
What is the name of the first actor?
Predicted answer: Brad Pitt
How many movies has George Clooney played in?
Predicted answer: COUNT > 69
What is the total number of movies?
Predicted answer: SUM > 87, 53, 69
In case of a conversational set-up, then each table-question pair must be provided **sequentially** to the model, such In case of a conversational set-up, then each table-question pair must be provided **sequentially** to the model, such
that the ``prev_labels`` token types can be overwritten by the predicted ``labels`` of the previous table-question that the ``prev_labels`` token types can be overwritten by the predicted ``labels`` of the previous table-question
pair. Again, more info can be found in `this notebook pair. Again, more info can be found in `this notebook
<https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb>`__. <https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb>`__
(for PyTorch) and `this notebook
<https://github.com/kamalkraj/Tapas-Tutorial/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb>`__
(for TensorFlow).
Tapas specific outputs Tapas specific outputs
...@@ -433,3 +622,31 @@ TapasForQuestionAnswering ...@@ -433,3 +622,31 @@ TapasForQuestionAnswering
.. autoclass:: transformers.TapasForQuestionAnswering .. autoclass:: transformers.TapasForQuestionAnswering
:members: forward :members: forward
TFTapasModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFTapasModel
:members: call
TFTapasForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFTapasForMaskedLM
:members: call
TFTapasForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFTapasForSequenceClassification
:members: call
TFTapasForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFTapasForQuestionAnswering
:members: call
...@@ -1446,6 +1446,7 @@ if is_tf_available(): ...@@ -1446,6 +1446,7 @@ if is_tf_available():
"TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"TF_MODEL_MAPPING", "TF_MODEL_MAPPING",
"TF_MODEL_WITH_LM_HEAD_MAPPING", "TF_MODEL_WITH_LM_HEAD_MAPPING",
...@@ -1458,6 +1459,7 @@ if is_tf_available(): ...@@ -1458,6 +1459,7 @@ if is_tf_available():
"TFAutoModelForQuestionAnswering", "TFAutoModelForQuestionAnswering",
"TFAutoModelForSeq2SeqLM", "TFAutoModelForSeq2SeqLM",
"TFAutoModelForSequenceClassification", "TFAutoModelForSequenceClassification",
"TFAutoModelForTableQuestionAnswering",
"TFAutoModelForTokenClassification", "TFAutoModelForTokenClassification",
"TFAutoModelWithLMHead", "TFAutoModelWithLMHead",
] ]
...@@ -1767,6 +1769,16 @@ if is_tf_available(): ...@@ -1767,6 +1769,16 @@ if is_tf_available():
"TFT5PreTrainedModel", "TFT5PreTrainedModel",
] ]
) )
_import_structure["models.tapas"].extend(
[
"TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFTapasForMaskedLM",
"TFTapasForQuestionAnswering",
"TFTapasForSequenceClassification",
"TFTapasModel",
"TFTapasPreTrainedModel",
]
)
_import_structure["models.transfo_xl"].extend( _import_structure["models.transfo_xl"].extend(
[ [
"TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
...@@ -3225,6 +3237,7 @@ if TYPE_CHECKING: ...@@ -3225,6 +3237,7 @@ if TYPE_CHECKING:
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING, TF_MODEL_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING,
...@@ -3237,6 +3250,7 @@ if TYPE_CHECKING: ...@@ -3237,6 +3250,7 @@ if TYPE_CHECKING:
TFAutoModelForQuestionAnswering, TFAutoModelForQuestionAnswering,
TFAutoModelForSeq2SeqLM, TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification, TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification, TFAutoModelForTokenClassification,
TFAutoModelWithLMHead, TFAutoModelWithLMHead,
) )
...@@ -3483,6 +3497,14 @@ if TYPE_CHECKING: ...@@ -3483,6 +3497,14 @@ if TYPE_CHECKING:
TFT5Model, TFT5Model,
TFT5PreTrainedModel, TFT5PreTrainedModel,
) )
from .models.tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
from .models.transfo_xl import ( from .models.transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding, TFAdaptiveEmbedding,
......
...@@ -213,6 +213,14 @@ except importlib_metadata.PackageNotFoundError: ...@@ -213,6 +213,14 @@ except importlib_metadata.PackageNotFoundError:
_soundfile_available = False _soundfile_available = False
_tensorflow_probability_available = importlib.util.find_spec("tensorflow_probability") is not None
try:
_tensorflow_probability_version = importlib_metadata.version("tensorflow_probability")
logger.debug(f"Successfully imported tensorflow-probability version {_tensorflow_probability_version}")
except importlib_metadata.PackageNotFoundError:
_tensorflow_probability_available = False
_timm_available = importlib.util.find_spec("timm") is not None _timm_available = importlib.util.find_spec("timm") is not None
try: try:
_timm_version = importlib_metadata.version("timm") _timm_version = importlib_metadata.version("timm")
...@@ -444,6 +452,10 @@ def is_pytorch_quantization_available(): ...@@ -444,6 +452,10 @@ def is_pytorch_quantization_available():
return _pytorch_quantization_available return _pytorch_quantization_available
def is_tensorflow_probability_available():
return _tensorflow_probability_available
def is_pandas_available(): def is_pandas_available():
return importlib.util.find_spec("pandas") is not None return importlib.util.find_spec("pandas") is not None
...@@ -629,6 +641,12 @@ PYTORCH_QUANTIZATION_IMPORT_ERROR = """ ...@@ -629,6 +641,12 @@ PYTORCH_QUANTIZATION_IMPORT_ERROR = """
`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com` `pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
""" """
# docstyle-ignore
TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
explained here: https://github.com/tensorflow/probability.
"""
# docstyle-ignore # docstyle-ignore
PANDAS_IMPORT_ERROR = """ PANDAS_IMPORT_ERROR = """
...@@ -684,6 +702,7 @@ BACKENDS_MAPPING = OrderedDict( ...@@ -684,6 +702,7 @@ BACKENDS_MAPPING = OrderedDict(
("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)), ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)), ("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
("speech", (is_speech_available, SPEECH_IMPORT_ERROR)), ("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)), ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
("timm", (is_timm_available, TIMM_IMPORT_ERROR)), ("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)), ("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
......
...@@ -399,7 +399,9 @@ def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=F ...@@ -399,7 +399,9 @@ def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=F
raise e raise e
# logger.warning(f"Initialize PyTorch weight {pt_weight_name}") # logger.warning(f"Initialize PyTorch weight {pt_weight_name}")
# Make sure we have a proper numpy array
if numpy.isscalar(array):
array = numpy.array(array)
new_pt_params_dict[pt_weight_name] = torch.from_numpy(array) new_pt_params_dict[pt_weight_name] = torch.from_numpy(array)
loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = torch.from_numpy(array) loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = torch.from_numpy(array)
all_tf_weights.discard(pt_weight_name) all_tf_weights.discard(pt_weight_name)
......
...@@ -83,6 +83,7 @@ if is_tf_available(): ...@@ -83,6 +83,7 @@ if is_tf_available():
"TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"TF_MODEL_MAPPING", "TF_MODEL_MAPPING",
"TF_MODEL_WITH_LM_HEAD_MAPPING", "TF_MODEL_WITH_LM_HEAD_MAPPING",
...@@ -95,6 +96,7 @@ if is_tf_available(): ...@@ -95,6 +96,7 @@ if is_tf_available():
"TFAutoModelForQuestionAnswering", "TFAutoModelForQuestionAnswering",
"TFAutoModelForSeq2SeqLM", "TFAutoModelForSeq2SeqLM",
"TFAutoModelForSequenceClassification", "TFAutoModelForSequenceClassification",
"TFAutoModelForTableQuestionAnswering",
"TFAutoModelForTokenClassification", "TFAutoModelForTokenClassification",
"TFAutoModelWithLMHead", "TFAutoModelWithLMHead",
] ]
...@@ -189,6 +191,7 @@ if TYPE_CHECKING: ...@@ -189,6 +191,7 @@ if TYPE_CHECKING:
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING, TF_MODEL_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING,
...@@ -201,6 +204,7 @@ if TYPE_CHECKING: ...@@ -201,6 +204,7 @@ if TYPE_CHECKING:
TFAutoModelForQuestionAnswering, TFAutoModelForQuestionAnswering,
TFAutoModelForSeq2SeqLM, TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification, TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification, TFAutoModelForTokenClassification,
TFAutoModelWithLMHead, TFAutoModelWithLMHead,
) )
......
...@@ -59,6 +59,7 @@ TF_MODEL_MAPPING_NAMES = OrderedDict( ...@@ -59,6 +59,7 @@ TF_MODEL_MAPPING_NAMES = OrderedDict(
("funnel", ("TFFunnelModel", "TFFunnelBaseModel")), ("funnel", ("TFFunnelModel", "TFFunnelBaseModel")),
("dpr", "TFDPRQuestionEncoder"), ("dpr", "TFDPRQuestionEncoder"),
("mpnet", "TFMPNetModel"), ("mpnet", "TFMPNetModel"),
("tapas", "TFTapasModel"),
("mbart", "TFMBartModel"), ("mbart", "TFMBartModel"),
("marian", "TFMarianModel"), ("marian", "TFMarianModel"),
("pegasus", "TFPegasusModel"), ("pegasus", "TFPegasusModel"),
...@@ -92,6 +93,7 @@ TF_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict( ...@@ -92,6 +93,7 @@ TF_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
("xlm", "TFXLMWithLMHeadModel"), ("xlm", "TFXLMWithLMHeadModel"),
("ctrl", "TFCTRLLMHeadModel"), ("ctrl", "TFCTRLLMHeadModel"),
("electra", "TFElectraForPreTraining"), ("electra", "TFElectraForPreTraining"),
("tapas", "TFTapasForMaskedLM"),
("funnel", "TFFunnelForPreTraining"), ("funnel", "TFFunnelForPreTraining"),
("mpnet", "TFMPNetForMaskedLM"), ("mpnet", "TFMPNetForMaskedLM"),
] ]
...@@ -124,6 +126,7 @@ TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict( ...@@ -124,6 +126,7 @@ TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
("xlm", "TFXLMWithLMHeadModel"), ("xlm", "TFXLMWithLMHeadModel"),
("ctrl", "TFCTRLLMHeadModel"), ("ctrl", "TFCTRLLMHeadModel"),
("electra", "TFElectraForMaskedLM"), ("electra", "TFElectraForMaskedLM"),
("tapas", "TFTapasForMaskedLM"),
("funnel", "TFFunnelForMaskedLM"), ("funnel", "TFFunnelForMaskedLM"),
("mpnet", "TFMPNetForMaskedLM"), ("mpnet", "TFMPNetForMaskedLM"),
] ]
...@@ -172,6 +175,7 @@ TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict( ...@@ -172,6 +175,7 @@ TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
("flaubert", "TFFlaubertWithLMHeadModel"), ("flaubert", "TFFlaubertWithLMHeadModel"),
("xlm", "TFXLMWithLMHeadModel"), ("xlm", "TFXLMWithLMHeadModel"),
("electra", "TFElectraForMaskedLM"), ("electra", "TFElectraForMaskedLM"),
("tapas", "TFTapasForMaskedLM"),
("funnel", "TFFunnelForMaskedLM"), ("funnel", "TFFunnelForMaskedLM"),
("mpnet", "TFMPNetForMaskedLM"), ("mpnet", "TFMPNetForMaskedLM"),
] ]
...@@ -215,6 +219,7 @@ TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( ...@@ -215,6 +219,7 @@ TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("flaubert", "TFFlaubertForSequenceClassification"), ("flaubert", "TFFlaubertForSequenceClassification"),
("xlm", "TFXLMForSequenceClassification"), ("xlm", "TFXLMForSequenceClassification"),
("electra", "TFElectraForSequenceClassification"), ("electra", "TFElectraForSequenceClassification"),
("tapas", "TFTapasForSequenceClassification"),
("funnel", "TFFunnelForSequenceClassification"), ("funnel", "TFFunnelForSequenceClassification"),
("gpt2", "TFGPT2ForSequenceClassification"), ("gpt2", "TFGPT2ForSequenceClassification"),
("mpnet", "TFMPNetForSequenceClassification"), ("mpnet", "TFMPNetForSequenceClassification"),
...@@ -249,6 +254,14 @@ TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( ...@@ -249,6 +254,14 @@ TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
] ]
) )
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
# Model for Table Question Answering mapping
("tapas", "TFTapasForQuestionAnswering"),
]
)
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict( TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[ [
# Model for Token Classification mapping # Model for Token Classification mapping
...@@ -323,6 +336,9 @@ TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping( ...@@ -323,6 +336,9 @@ TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping( TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES CONFIG_MAPPING_NAMES, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
) )
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES
)
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = _LazyAutoMapping( TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
) )
...@@ -402,6 +418,17 @@ class TFAutoModelForQuestionAnswering(_BaseAutoModelClass): ...@@ -402,6 +418,17 @@ class TFAutoModelForQuestionAnswering(_BaseAutoModelClass):
TFAutoModelForQuestionAnswering = auto_class_update(TFAutoModelForQuestionAnswering, head_doc="question answering") TFAutoModelForQuestionAnswering = auto_class_update(TFAutoModelForQuestionAnswering, head_doc="question answering")
class TFAutoModelForTableQuestionAnswering(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
TFAutoModelForTableQuestionAnswering = auto_class_update(
TFAutoModelForTableQuestionAnswering,
head_doc="table question answering",
checkpoint_for_example="google/tapas-base-finetuned-wtq",
)
class TFAutoModelForTokenClassification(_BaseAutoModelClass): class TFAutoModelForTokenClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
......
...@@ -18,7 +18,7 @@ ...@@ -18,7 +18,7 @@
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available from ...file_utils import _LazyModule, is_tf_available, is_torch_available
_import_structure = { _import_structure = {
...@@ -36,6 +36,15 @@ if is_torch_available(): ...@@ -36,6 +36,15 @@ if is_torch_available():
"TapasPreTrainedModel", "TapasPreTrainedModel",
"load_tf_weights_in_tapas", "load_tf_weights_in_tapas",
] ]
if is_tf_available():
_import_structure["modeling_tf_tapas"] = [
"TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFTapasForMaskedLM",
"TFTapasForQuestionAnswering",
"TFTapasForSequenceClassification",
"TFTapasModel",
"TFTapasPreTrainedModel",
]
if TYPE_CHECKING: if TYPE_CHECKING:
...@@ -53,6 +62,17 @@ if TYPE_CHECKING: ...@@ -53,6 +62,17 @@ if TYPE_CHECKING:
load_tf_weights_in_tapas, load_tf_weights_in_tapas,
) )
if is_tf_available():
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else: else:
import sys import sys
......
# coding=utf-8
# Copyright 2021 Google Research and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 TAPAS model. """
import enum
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_tensorflow_probability_available,
requires_backends,
)
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPastAndCrossAttentions,
TFBaseModelOutputWithPooling,
TFMaskedLMOutput,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
input_processing,
keras_serializable,
shape_list,
)
from ...utils import logging
from .configuration_tapas import TapasConfig
logger = logging.get_logger(__name__)
# soft dependency
if is_tensorflow_probability_available():
try:
import tensorflow_probability as tfp
# On the first call, check whether a compatible version of TensorFlow is installed
# TensorFlow Probability depends on a recent stable release of TensorFlow
n = tfp.distributions.Normal(loc=0.0, scale=1.0)
except ImportError:
logger.error(
"TAPAS models are not usable since `tensorflow_probability` can't be loaded."
"It seems you have `tensorflow_probability` installed with the wrong tensorflow version."
"Please try to reinstall it following the instructions here: https://github.com/tensorflow/probability."
)
_CONFIG_FOR_DOC = "TapasConfig"
_TOKENIZER_FOR_DOC = "TapasTokenizer"
_CHECKPOINT_FOR_DOC = "google/tapas-base"
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = [
# large models
"google/tapas-large",
"google/tapas-large-finetuned-sqa",
"google/tapas-large-finetuned-wtq",
"google/tapas-large-finetuned-wikisql-supervised",
"google/tapas-large-finetuned-tabfact",
# base models
"google/tapas-base",
"google/tapas-base-finetuned-sqa",
"google/tapas-base-finetuned-wtq",
"google/tapas-base-finetuned-wikisql-supervised",
"google/tapas-base-finetuned-tabfact",
# small models
"google/tapas-small",
"google/tapas-small-finetuned-sqa",
"google/tapas-small-finetuned-wtq",
"google/tapas-small-finetuned-wikisql-supervised",
"google/tapas-small-finetuned-tabfact",
# mini models
"google/tapas-mini",
"google/tapas-mini-finetuned-sqa",
"google/tapas-mini-finetuned-wtq",
"google/tapas-mini-finetuned-wikisql-supervised",
"google/tapas-mini-finetuned-tabfact",
# tiny models
"google/tapas-tiny",
"google/tapas-tiny-finetuned-sqa",
"google/tapas-tiny-finetuned-wtq",
"google/tapas-tiny-finetuned-wikisql-supervised",
"google/tapas-tiny-finetuned-tabfact",
# See all TAPAS models at https://huggingface.co/models?filter=tapas
]
EPSILON_ZERO_DIVISION = 1e-10
CLOSE_ENOUGH_TO_LOG_ZERO = -10000.0
@dataclass
class TFTableQuestionAnsweringOutput(ModelOutput):
"""
Output type of :class:`~transformers.TFTapasForQuestionAnswering`.
Args:
loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` (and possibly :obj:`answer`, :obj:`aggregation_labels`, :obj:`numeric_values` and :obj:`numeric_values_scale` are provided)):
Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the
semi-supervised regression loss and (optionally) supervised loss for aggregations.
logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Prediction scores of the cell selection head, for every token.
logits_aggregation (:obj:`tf.Tensor`, `optional`, of shape :obj:`(batch_size, num_aggregation_labels)`):
Prediction scores of the aggregation head, for every aggregation operator.
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each
layer plus the initial embedding outputs.
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[tf.Tensor] = None
logits: tf.Tensor = None
logits_aggregation: Optional[tf.Tensor] = None
hidden_states: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[tf.Tensor]] = None
class TFTapasEmbeddings(tf.keras.layers.Layer):
"""
Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of
additional token type embeddings to encode tabular structure.
"""
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
self.type_vocab_sizes = config.type_vocab_sizes
self.number_of_token_type_embeddings = len(config.type_vocab_sizes)
self.reset_position_index_per_cell = config.reset_position_index_per_cell
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape: tf.TensorShape):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
for i, type_vocab_size in enumerate(self.type_vocab_sizes):
with tf.name_scope(f"token_type_embeddings_{i}"):
setattr(
self,
f"token_type_embeddings_{i}",
self.add_weight(
name="embeddings",
shape=[type_vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
),
)
super().build(input_shape)
def call(
self,
input_ids: tf.Tensor = None,
position_ids: tf.Tensor = None,
token_type_ids: tf.Tensor = None,
inputs_embeds: tf.Tensor = None,
training: bool = False,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (:obj:`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
if input_ids is not None:
input_shape = shape_list(input_ids)
else:
input_shape = shape_list(inputs_embeds)[:-1]
seq_length = input_shape[1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape + [self.number_of_token_type_embeddings], value=0)
if position_ids is None:
# create absolute position embeddings
position_ids = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0)
position_ids = tf.broadcast_to(position_ids, shape=input_shape)
# when self.config.reset_position_index_per_cell is set to True, create relative position embeddings
if self.reset_position_index_per_cell:
# shape (batch_size, seq_len)
col_index = IndexMap(token_type_ids[:, :, 1], self.type_vocab_sizes[1], batch_dims=1)
# shape (batch_size, seq_len)
row_index = IndexMap(token_type_ids[:, :, 2], self.type_vocab_sizes[2], batch_dims=1)
# shape (batch_size, seq_len)
full_index = ProductIndexMap(col_index, row_index)
# shape (max_rows * max_columns,). First absolute position for every cell
first_position_per_segment = reduce_min(position_ids, full_index)[0]
# ? shape (batch_size, seq_len). First absolute position of the cell for every token
first_position = gather(first_position_per_segment, full_index)
# shape (1, seq_len)
position = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0)
position_ids = tf.math.minimum(self.max_position_embeddings - 1, position - first_position)
if input_ids is not None:
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
position_embeddings = tf.gather(self.position_embeddings, indices=position_ids)
final_embeddings = inputs_embeds + position_embeddings
for i in range(self.number_of_token_type_embeddings):
name = f"token_type_embeddings_{i}"
final_embeddings += tf.gather(params=getattr(self, name), indices=token_type_ids[:, :, i])
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Tapas
class TFTapasSelfAttention(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
key_layer = tf.concatenate([past_key_value[0], key_layer], dim=2)
value_layer = tf.concatenate([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in TFTapasModel call() function)
attention_scores = tf.add(attention_scores, attention_mask)
# Normalize the attention scores to probabilities.
attention_probs = tf.nn.softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Tapas
class TFTapasSelfOutput(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Tapas
class TFTapasAttention(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFTapasSelfAttention(config, name="self")
self.dense_output = TFTapasSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
# add attentions (possibly with past_key_value) if we output them
outputs = (attention_output,) + self_outputs[1:]
return outputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Tapas
class TFTapasIntermediate(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Tapas
class TFTapasOutput(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Tapas
class TFTapasLayer(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFTapasAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFTapasAttention(config, name="crossattention")
self.intermediate = TFTapasIntermediate(config, name="intermediate")
self.bert_output = TFTapasOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: Optional[tf.Tensor],
encoder_attention_mask: Optional[tf.Tensor],
past_key_value: Optional[Tuple[tf.Tensor]],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=self_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers "
"by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
input_tensor=attention_output,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
intermediate_output = self.intermediate(hidden_states=attention_output)
layer_output = self.bert_output(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Tapas
class TFTapasEncoder(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layer = [TFTapasLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: Optional[tf.Tensor],
encoder_attention_mask: Optional[tf.Tensor],
past_key_values: Optional[Tuple[Tuple[tf.Tensor]]],
use_cache: Optional[bool],
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.config.add_cross_attention and encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Tapas
class TFTapasPooler(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Tapas
class TFTapasPredictionHeadTransform(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="dense",
)
if isinstance(config.hidden_act, str):
self.transform_act_fn = get_tf_activation(config.hidden_act)
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(inputs=hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Tapas
class TFTapasLMPredictionHead(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, input_embeddings: tf.keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
self.hidden_size = config.hidden_size
self.transform = TFTapasPredictionHeadTransform(config, name="transform")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.input_embeddings = input_embeddings
def build(self, input_shape: tf.TensorShape):
self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self) -> tf.keras.layers.Layer:
return self.input_embeddings
def set_output_embeddings(self, value: tf.Variable):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self) -> Dict[str, tf.Variable]:
return {"bias": self.bias}
def set_bias(self, value: tf.Variable):
self.bias = value["bias"]
self.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.transform(hidden_states=hidden_states)
seq_length = shape_list(hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Tapas
class TFTapasMLMHead(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, input_embeddings: tf.keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.predictions = TFTapasLMPredictionHead(config, input_embeddings, name="predictions")
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
prediction_scores = self.predictions(hidden_states=sequence_output)
return prediction_scores
@keras_serializable
class TFTapasMainLayer(tf.keras.layers.Layer):
config_class = TapasConfig
def __init__(self, config: TapasConfig, add_pooling_layer: bool = True, **kwargs):
requires_backends(self, "tensorflow_probability")
super().__init__(**kwargs)
self.config = config
self.embeddings = TFTapasEmbeddings(config, name="embeddings")
self.encoder = TFTapasEncoder(config, name="encoder")
self.pooler = TFTapasPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self) -> tf.keras.layers.Layer:
return self.embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
elif inputs["inputs_embeds"] is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs["attention_mask"] is None:
inputs["attention_mask"] = tf.fill(dims=input_shape, value=1)
if inputs["token_type_ids"] is None:
inputs["token_type_ids"] = tf.fill(dims=input_shape + [len(self.config.type_vocab_sizes)], value=0)
embedding_output = self.embeddings(
input_ids=inputs["input_ids"],
position_ids=inputs["position_ids"],
token_type_ids=inputs["token_type_ids"],
inputs_embeds=inputs["inputs_embeds"],
training=inputs["training"],
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = tf.reshape(inputs["attention_mask"], (input_shape[0], 1, 1, input_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if inputs["head_mask"] is not None:
raise NotImplementedError
else:
inputs["head_mask"] = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=inputs["head_mask"],
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not inputs["return_dict"]:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class TFTapasPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TapasConfig
base_model_prefix = "tapas"
TAPAS_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
generic methods the library implements for all its model (such as downloading or saving, resizing the input
embeddings, pruning heads etc.)
This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use
it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage
and behavior.
.. note::
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all
the tensors in the first argument of the model call function: :obj:`model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in
the first positional argument :
- a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
:obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Parameters:
config (:class:`~transformers.TapasConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
TAPAS_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`np.ndarray`, :obj:`tf.Tensor`, :obj:`List[tf.Tensor]` :obj:`Dict[str, tf.Tensor]` or :obj:`Dict[str, np.ndarray]` and each example must have the shape :obj:`({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.TapasTokenizer`. See
:func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0}, 7)`, `optional`):
Token indices that encode tabular structure. Indices can be obtained using
:class:`~transformers.TapasTokenizer`. See this class for more info.
`What are token type IDs? <../glossary.html#token-type-ids>`__
position_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
Indices of positions of each input sequence tokens in the position embeddings. If
``reset_position_index_per_cell`` of :class:`~transformers.TapasConfig` is set to ``True``, relative
position embeddings will be used. Selected in the range ``[0, config.max_position_embeddings - 1]``.
`What are position IDs? <../glossary.html#position-ids>`__
head_mask (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This
argument can be used in eager mode, in graph mode the value will always be set to True.
training (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare Tapas Model transformer outputting raw hidden-states without any specific head on top.",
TAPAS_START_DOCSTRING,
)
class TFTapasModel(TFTapasPreTrainedModel):
def __init__(self, config: TapasConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.tapas = TFTapasMainLayer(config, name="tapas")
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
Examples::
>>> from transformers import TapasTokenizer, TapasModel
>>> import pandas as pd
>>> tokenizer = TapasTokenizer.from_pretrained('google/tapas-base')
>>> model = TapasModel.from_pretrained('google/tapas-base')
>>> data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
... 'Age': ["56", "45", "59"],
... 'Number of movies': ["87", "53", "69"]
... }
>>> table = pd.DataFrame.from_dict(data)
>>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"]
>>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
outputs = self.tapas(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
return outputs
def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFBaseModelOutputWithPooling(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
hidden_states=hs,
attentions=attns,
)
@add_start_docstrings("""Tapas Model with a `language modeling` head on top. """, TAPAS_START_DOCSTRING)
class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config: TapasConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if config.is_decoder:
logger.warning(
"If you want to use `TFTapasForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.tapas = TFTapasMainLayer(config, add_pooling_layer=False, name="tapas")
self.lm_head = TFTapasMLMHead(config, input_embeddings=self.tapas.embeddings, name="cls")
def get_lm_head(self) -> tf.keras.layers.Layer:
return self.lm_head.predictions
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
Returns:
Examples::
>>> from transformers import TapasTokenizer, TapasForMaskedLM
>>> import pandas as pd
>>> tokenizer = TapasTokenizer.from_pretrained('google/tapas-base')
>>> model = TapasForMaskedLM.from_pretrained('google/tapas-base')
>>> data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
... 'Age': ["56", "45", "59"],
... 'Number of movies': ["87", "53", "69"]
... }
>>> table = pd.DataFrame.from_dict(data)
>>> inputs = tokenizer(table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="tf")
>>> labels = tokenizer(table=table, queries="How many movies has George Clooney played in?", return_tensors="tf")["input_ids"]
>>> outputs = model(**inputs, labels=labels)
>>> last_hidden_states = outputs.last_hidden_state
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
outputs = self.tapas(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
loss = (
None if inputs["labels"] is None else self.compute_loss(labels=inputs["labels"], logits=prediction_scores)
)
if not inputs["return_dict"]:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
class TFTapasComputeTokenLogits(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.temperature = config.temperature
# cell selection heads
with tf.name_scope("output"):
self.output_weights = self.add_weight(
name="output_weights",
shape=(config.hidden_size,),
dtype=tf.float32,
trainable=True,
initializer=tf.zeros_initializer()
if config.init_cell_selection_weights_to_zero
else tf.keras.initializers.TruncatedNormal(stddev=config.initializer_range),
)
self.output_bias = self.add_weight(
name="output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer()
)
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
"""
Computes logits per token
Args:
sequence_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the
model.
Returns:
logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Logits per token.
"""
logits = (tf.einsum("bsj,j->bs", sequence_output, self.output_weights) + self.output_bias) / self.temperature
return logits
class TFTapasComputeColumnLogits(tf.keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
with tf.name_scope("column_output"):
self.column_output_weights = self.add_weight(
name="column_output_weights",
shape=[config.hidden_size],
dtype=tf.float32,
trainable=True,
initializer=tf.zeros_initializer()
if config.init_cell_selection_weights_to_zero
else tf.keras.initializers.TruncatedNormal(stddev=config.initializer_range),
)
self.column_output_bias = self.add_weight(
name="column_output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer()
)
def call(self, sequence_output, cell_index, cell_mask, allow_empty_column_selection) -> tf.Tensor:
"""
Computes the column logits.
Args:
sequence_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the
model.
cell_index (:obj:`ProductIndexMap`):
Index that groups tokens into cells.
cell_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, max_num_rows * max_num_cols)`):
Mask for cells that exist in the table (i.e. that are not padding).
allow_empty_column_selection (:obj:`bool`):
Whether to allow not to select any column
Returns:
column_logits (:obj:`tf.Tensor`of shape :obj:`(batch_size, max_num_cols)`): Tensor containing the column
logits for every example in the batch.
"""
# First, compute the token logits (batch_size, seq_len) - without temperature
token_logits = tf.einsum("bsj,j->bs", sequence_output, self.column_output_weights) + self.column_output_bias
# Next, average the logits per cell (batch_size, max_num_cols*max_num_rows)
cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index)
# Finally, average the logits per column (batch_size, max_num_cols)
column_index = cell_index.project_inner(cell_logits_index)
column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index)
cell_count, _ = reduce_sum(cell_mask, column_index)
column_logits /= cell_count + EPSILON_ZERO_DIVISION
# Mask columns that do not appear in the example.
is_padding = tf.logical_and(cell_count < 0.5, tf.not_equal(out_index.indices, 0))
column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(is_padding, tf.float32)
if not allow_empty_column_selection:
column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(tf.equal(out_index.indices, 0), tf.float32)
return column_logits
@add_start_docstrings(
"""
Tapas Model with a cell selection head and optional aggregation head on top for question-answering tasks on tables
(linear layers on top of the hidden-states output to compute `logits` and optional `logits_aggregation`), e.g. for
SQA, WTQ or WikiSQL-supervised tasks.
""",
TAPAS_START_DOCSTRING,
)
class TFTapasForQuestionAnswering(TFTapasPreTrainedModel):
def __init__(self, config: TapasConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
# base model
self.tapas = TFTapasMainLayer(config, name="tapas")
# dropout
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
self.compute_token_logits = TFTapasComputeTokenLogits(config, name="compute_token_logits")
self.compute_column_logits = TFTapasComputeColumnLogits(config, name="compute_column_logits")
if config.num_aggregation_labels > 0:
self.aggregation_classifier = tf.keras.layers.Dense(
config.num_aggregation_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="aggregation_classifier",
)
self.config = config
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTableQuestionAnsweringOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
table_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
aggregation_labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
float_answer: Optional[Union[np.ndarray, tf.Tensor]] = None,
numeric_values: Optional[Union[np.ndarray, tf.Tensor]] = None,
numeric_values_scale: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]:
r"""
table_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, seq_length)`, `optional`):
Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and
padding are 0.
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, seq_length)`, `optional`):
Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the
answer appearing in the table. Can be obtained using :class:`~transformers.TapasTokenizer`.
- 1 for tokens that are **part of the answer**,
- 0 for tokens that are **not part of the answer**.
aggregation_labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, )`, `optional`):
Aggregation function index for every example in the batch for computing the aggregation loss. Indices
should be in :obj:`[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong
supervision for aggregation (WikiSQL-supervised).
float_answer (:obj:`tf.Tensor` of shape :obj:`(batch_size, )`, `optional`):
Float answer for every example in the batch. Set to `float('nan')` for cell selection questions. Only
required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss.
numeric_values (:obj:`tf.Tensor` of shape :obj:`(batch_size, seq_length)`, `optional`):
Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using
:class:`~transformers.TapasTokenizer`. Only required in case of weak supervision for aggregation (WTQ) to
calculate the regression loss.
numeric_values_scale (:obj:`tf.Tensor` of shape :obj:`(batch_size, seq_length)`, `optional`):
Scale of the numeric values of every token. Can be obtained using :class:`~transformers.TapasTokenizer`.
Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss.
Returns:
Examples::
>>> from transformers import TapasTokenizer, TapasForQuestionAnswering
>>> import pandas as pd
>>> tokenizer = TapasTokenizer.from_pretrained('google/tapas-base-finetuned-wtq')
>>> model = TapasForQuestionAnswering.from_pretrained('google/tapas-base-finetuned-wtq')
>>> data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
... 'Age': ["56", "45", "59"],
... 'Number of movies': ["87", "53", "69"]
... }
>>> table = pd.DataFrame.from_dict(data)
>>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"]
>>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> logits_aggregation = outputs.logits_aggregation
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
table_mask=table_mask,
aggregation_labels=aggregation_labels,
float_answer=float_answer,
numeric_values=numeric_values,
numeric_values_scale=numeric_values_scale,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
outputs = self.tapas(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
sequence_output = outputs[0]
pooled_output = outputs[1]
sequence_output = self.dropout(sequence_output)
if inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
else:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
# Construct indices for the table.
if inputs["token_type_ids"] is None:
inputs["token_type_ids"] = tf.fill(input_shape + [len(self.config.type_vocab_sizes)], 0)
token_types = [
"segment_ids",
"column_ids",
"row_ids",
"prev_labels",
"column_ranks",
"inv_column_ranks",
"numeric_relations",
]
row_ids = inputs["token_type_ids"][:, :, token_types.index("row_ids")]
column_ids = inputs["token_type_ids"][:, :, token_types.index("column_ids")]
# Construct indices for the table.
row_index = IndexMap(
indices=tf.minimum(tf.cast(row_ids, tf.int32), self.config.max_num_rows - 1),
num_segments=self.config.max_num_rows,
batch_dims=1,
)
col_index = IndexMap(
indices=tf.minimum(tf.cast(column_ids, tf.int32), self.config.max_num_columns - 1),
num_segments=self.config.max_num_columns,
batch_dims=1,
)
cell_index = ProductIndexMap(row_index, col_index)
# Masks.
input_shape = (
shape_list(inputs["input_ids"])
if inputs["input_ids"] is not None
else shape_list(inputs["inputs_embeds"])[:-1]
)
if inputs["attention_mask"] is None:
inputs["attention_mask"] = tf.ones(input_shape)
# Table cells only, without question tokens and table headers.
if inputs["table_mask"] is None:
inputs["table_mask"] = tf.where(row_ids > 0, tf.ones_like(row_ids), tf.zeros_like(row_ids))
# <float32>[batch_size, seq_length]
input_mask_float = tf.cast(inputs["attention_mask"], tf.float32)
table_mask_float = tf.cast(inputs["table_mask"], tf.float32)
# Mask for cells that exist in the table (i.e. that are not padding).
cell_mask, _ = reduce_mean(input_mask_float, cell_index)
# Compute logits per token. These are used to select individual cells.
logits = self.compute_token_logits(sequence_output)
# Compute logits per column. These are used to select a column.
column_logits = None
if self.config.select_one_column:
column_logits = self.compute_column_logits(
sequence_output, cell_index, cell_mask, self.config.allow_empty_column_selection
)
# Aggregate logits.
logits_aggregation = None
if self.config.num_aggregation_labels > 0:
logits_aggregation = self.aggregation_classifier(pooled_output)
# Total loss calculation
total_loss = 0.0
calculate_loss = False
if inputs["labels"] is not None:
calculate_loss = True
is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision
# Semi-supervised cell selection in case of no aggregation:
# If the answer (the denotation) appears directly in the table we might
# select the answer without applying any aggregation function. There are
# some ambiguous cases, see utils._calculate_aggregate_mask for more info.
# `aggregate_mask` is 1 for examples where we chose to aggregate and 0
# for examples where we chose to select the answer directly.
# `labels` encodes the positions of the answer appearing in the table.
if is_supervised:
aggregate_mask = None
else:
if inputs["float_answer"] is not None:
assert (
shape_list(inputs["labels"])[0] == shape_list(inputs["float_answer"])[0]
), "Make sure the answers are a FloatTensor of shape (batch_size,)"
# <float32>[batch_size]
aggregate_mask = _calculate_aggregate_mask(
inputs["float_answer"],
pooled_output,
self.config.cell_selection_preference,
inputs["labels"],
self.aggregation_classifier,
)
else:
aggregate_mask = None
raise ValueError("You have to specify float answers in order to calculate the aggregate mask")
# Cell selection log-likelihood
if self.config.average_logits_per_cell:
logits_per_cell, _ = reduce_mean(logits, cell_index)
logits = gather(logits_per_cell, cell_index)
dist_per_token = tfp.distributions.Bernoulli(logits=logits)
# Compute cell selection loss per example.
selection_loss_per_example = None
if not self.config.select_one_column:
weight = tf.where(
inputs["labels"] == 0,
tf.ones_like(inputs["labels"], dtype=tf.float32),
self.config.positive_label_weight * tf.ones_like(inputs["labels"], dtype=tf.float32),
)
selection_loss_per_token = -dist_per_token.log_prob(inputs["labels"]) * weight
selection_loss_per_example = tf.reduce_sum(selection_loss_per_token * input_mask_float, axis=1) / (
tf.reduce_sum(input_mask_float, axis=1) + EPSILON_ZERO_DIVISION
)
else:
selection_loss_per_example, logits = _single_column_cell_selection_loss(
logits, column_logits, inputs["labels"], cell_index, col_index, cell_mask
)
dist_per_token = tfp.distributions.Bernoulli(logits=logits)
# Supervised cell selection
if self.config.disable_per_token_loss:
pass
elif is_supervised:
total_loss += tf.reduce_mean(selection_loss_per_example)
else:
# For the not supervised case, do not assign loss for cell selection
total_loss += tf.reduce_mean(selection_loss_per_example * (1.0 - aggregate_mask))
# Semi-supervised regression loss and supervised loss for aggregations
if self.config.num_aggregation_labels > 0:
if is_supervised:
# Note that `aggregate_mask` is None if the setting is supervised.
if inputs["aggregation_labels"] is not None:
assert (
shape_list(inputs["labels"])[0] == shape_list(inputs["aggregation_labels"])[0]
), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)"
per_example_additional_loss = _calculate_aggregation_loss(
logits_aggregation,
aggregate_mask,
inputs["aggregation_labels"],
self.config.use_answer_as_supervision,
self.config.num_aggregation_labels,
self.config.aggregation_loss_weight,
)
else:
raise ValueError(
"You have to specify aggregation labels in order to calculate the aggregation loss"
)
else:
aggregation_labels = tf.zeros(shape_list(inputs["labels"])[0], dtype=tf.int32)
per_example_additional_loss = _calculate_aggregation_loss(
logits_aggregation,
aggregate_mask,
aggregation_labels,
self.config.use_answer_as_supervision,
self.config.num_aggregation_labels,
self.config.aggregation_loss_weight,
)
if self.config.use_answer_as_supervision:
if inputs["numeric_values"] is not None and inputs["numeric_values_scale"] is not None:
assert shape_list(inputs["numeric_values"]) == shape_list(inputs["numeric_values_scale"])
# Add regression loss for numeric answers which require aggregation.
answer_loss, large_answer_loss_mask = _calculate_regression_loss(
inputs["float_answer"],
aggregate_mask,
dist_per_token,
inputs["numeric_values"],
inputs["numeric_values_scale"],
table_mask_float,
logits_aggregation,
self.config,
)
per_example_additional_loss += answer_loss
# Zero loss for examples with answer_loss > cutoff.
per_example_additional_loss *= large_answer_loss_mask
else:
raise ValueError(
"You have to specify numeric values and numeric values scale in order to calculate the regression loss"
)
total_loss += tf.reduce_mean(per_example_additional_loss)
else:
# if no label ids are provided, set them to zeros in order to properly compute logits
labels = tf.zeros_like(logits)
_, logits = _single_column_cell_selection_loss(
logits, column_logits, labels, cell_index, col_index, cell_mask
)
if not inputs["return_dict"]:
output = (logits, logits_aggregation) + outputs[2:]
return ((total_loss,) + output) if calculate_loss else output
return TFTableQuestionAnsweringOutput(
loss=total_loss if calculate_loss else None,
logits=logits,
logits_aggregation=logits_aggregation,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFTableQuestionAnsweringOutput) -> TFTableQuestionAnsweringOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFTableQuestionAnsweringOutput(
logits=output.logits, logits_aggregation=output.logits_aggregation, hidden_states=hs, attentions=attns
)
@add_start_docstrings(
"""
Tapas Model with a sequence classification head on top (a linear layer on top of the pooled output), e.g. for table
entailment tasks, such as TabFact (Chen et al., 2020).
""",
TAPAS_START_DOCSTRING,
)
class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: TapasConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.tapas = TFTapasMainLayer(config, name="tapas")
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob, name="dropout")
self.classifier = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called
"classification_class_index" in the original implementation.
Returns:
Examples::
>>> from transformers import TapasTokenizer, TapasForSequenceClassification
>>> import tensorflow as tf
>>> import pandas as pd
>>> tokenizer = TapasTokenizer.from_pretrained('google/tapas-base-finetuned-tabfact')
>>> model = TapasForSequenceClassification.from_pretrained('google/tapas-base-finetuned-tabfact')
>>> data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
... 'Age': ["56", "45", "59"],
... 'Number of movies': ["87", "53", "69"]
... }
>>> table = pd.DataFrame.from_dict(data)
>>> queries = ["There is only one actor who is 45 years old", "There are 3 actors which played in more than 60 movies"]
>>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf")
>>> labels = tf.convert_to_tensor([1, 0]) # 1 means entailed, 0 means refuted
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
outputs = self.tapas(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
pooled_output = outputs[1]
pooled_output = self.dropout(inputs=pooled_output, training=inputs["training"])
logits = self.classifier(inputs=pooled_output)
loss = None if inputs["labels"] is None else self.compute_loss(labels=inputs["labels"], logits=logits)
if not inputs["return_dict"]:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
""" TAPAS utilities."""
class AverageApproximationFunction(str, enum.Enum):
RATIO = "ratio"
FIRST_ORDER = "first_order"
SECOND_ORDER = "second_order"
# Beginning of everything related to segmented tensors
class IndexMap(object):
"""Index grouping entries within a tensor."""
def __init__(self, indices, num_segments, batch_dims=0):
"""
Creates an index.
Args:
indices: <int32> Tensor of indices, same shape as `values`.
num_segments: <int32> Scalar tensor, the number of segments. All elements
in a batched segmented tensor must have the same number of segments (although many segments can be empty).
batch_dims: Python integer, the number of batch dimensions. The first
`batch_dims` dimensions of a SegmentedTensor are treated as batch dimensions. Segments in different batch
elements are always distinct even if they have the same index.
"""
self.indices = tf.convert_to_tensor(indices)
self.num_segments = tf.convert_to_tensor(num_segments)
self.batch_dims = batch_dims
def batch_shape(self):
return tf.shape(self.indices)[: self.batch_dims]
class ProductIndexMap(IndexMap):
"""The product of two indices."""
def __init__(self, outer_index, inner_index):
"""
Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the
intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows
and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation
combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has `num_segments` equal to
`outer_index.num_segements` * `inner_index.num_segments`.
Args:
outer_index: IndexMap.
inner_index: IndexMap, must have the same shape as `outer_index`.
"""
if outer_index.batch_dims != inner_index.batch_dims:
raise ValueError("outer_index.batch_dims and inner_index.batch_dims " "must be the same.")
super(ProductIndexMap, self).__init__(
indices=(inner_index.indices + outer_index.indices * inner_index.num_segments),
num_segments=inner_index.num_segments * outer_index.num_segments,
batch_dims=inner_index.batch_dims,
)
self.outer_index = outer_index
self.inner_index = inner_index
def project_outer(self, index):
"""Projects an index with the same index set onto the outer components."""
return IndexMap(
indices=tf.math.floordiv(index.indices, self.inner_index.num_segments),
num_segments=self.outer_index.num_segments,
batch_dims=index.batch_dims,
)
def project_inner(self, index):
"""Projects an index with the same index set onto the inner components."""
return IndexMap(
indices=tf.math.floormod(index.indices, self.inner_index.num_segments),
num_segments=self.inner_index.num_segments,
batch_dims=index.batch_dims,
)
def gather(values, index, name="segmented_gather"):
"""
Gathers from `values` using the index map. For each element in the domain of the index map this operation looks up
a value for that index in `values`. Two elements from the same segment always get assigned the same value.
Args:
values: [B1, ..., Bn, num_segments, V1, ...] Tensor with segment values.
index: [B1, ..., Bn, I1, ..., Ik] IndexMap.
name: Name for the TensorFlow operation.
Returns:
[B1, ..., Bn, I1, ..., Ik, V1, ...] Tensor with the gathered values.
"""
return tf.gather(values, index.indices, batch_dims=index.batch_dims, name=name)
def flatten(index, name="segmented_flatten"):
"""
Flattens a batched index map to a 1d index map. This operation relabels the segments to keep batch elements
distinct. The k-th batch element will have indices shifted by `num_segments` * (k - 1). The result is a tensor with
`num_segments` multiplied by the number of elements in the batch.
Args:
index: IndexMap to flatten.
name: Name for the TensorFlow operation.
Returns:
The flattened IndexMap.
"""
batch_size = tf.reduce_prod(index.batch_shape())
offset = tf.range(batch_size) * index.num_segments
offset = tf.reshape(offset, index.batch_shape())
for _ in range(index.batch_dims, index.indices.shape.rank):
offset = tf.expand_dims(offset, -1)
indices = offset + index.indices
return IndexMap(indices=tf.reshape(indices, [-1]), num_segments=index.num_segments * batch_size, batch_dims=0)
def range_index_map(batch_shape, num_segments, name="range_index_map"):
"""
Constructs an index map equal to range(num_segments).
Args:
batch_shape (:obj:`tf.Tensor`):
Batch shape
num_segments (:obj:`int`):
Number of segments
name (:obj:`str`, `optional`, defaults to 'range_index_map'):
Name for the operation. Currently not used
Returns:
(:obj:`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments).
"""
batch_shape = tf.convert_to_tensor(batch_shape)
batch_shape.shape.assert_has_rank(1)
num_segments = tf.convert_to_tensor(num_segments)
num_segments.shape.assert_has_rank(0)
indices = tf.range(num_segments)
shape = tf.concat([tf.ones_like(batch_shape, dtype=tf.int32), tf.expand_dims(num_segments, axis=0)], axis=0)
indices = tf.reshape(indices, shape)
multiples = tf.concat([batch_shape, [1]], axis=0)
indices = tf.tile(indices, multiples)
return IndexMap(indices=indices, num_segments=num_segments, batch_dims=batch_shape.shape.as_list()[0])
def _segment_reduce(values, index, segment_reduce_fn, name):
"""
Applies a segment reduction segment-wise.
Args:
values (:obj:`tf.Tensor`):
Tensor with segment values.
index (:obj:`IndexMap`):
IndexMap.
segment_reduce_fn (:obj:`str`):
Name for the reduce operation. One of "sum", "mean", "max" or "min".
name (:obj:`str`):
Name for the operation. Currently not used
Returns:
(:obj:`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments).
"""
# Flatten the batch dimensions, as segments ops do not support batching.
# However if `values` has extra dimensions to the right keep them
# unflattened. Segmented ops support vector-valued operations.
flat_index = flatten(index)
vector_shape = tf.shape(values)[index.indices.shape.rank :]
flattened_shape = tf.concat([[-1], vector_shape], axis=0)
flat_values = tf.reshape(values, flattened_shape)
segment_means = segment_reduce_fn(
data=flat_values, segment_ids=flat_index.indices, num_segments=flat_index.num_segments
)
# Unflatten the values.
new_shape = tf.concat([index.batch_shape(), [index.num_segments], vector_shape], axis=0)
output_values = tf.reshape(segment_means, new_shape)
output_index = range_index_map(index.batch_shape(), index.num_segments)
return output_values, output_index
def reduce_mean(values, index, name="segmented_reduce_mean"):
"""
Averages a tensor over its segments. Outputs 0 for empty segments. This operations computes the mean over segments,
with support for:
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
- Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a mean of vectors
rather than scalars.
Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
Args:
values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be
averaged.
index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments.
name: Name for the TensorFlow ops.
Returns:
A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments,
V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments].
"""
return _segment_reduce(values, index, tf.math.unsorted_segment_mean, name)
def reduce_sum(values, index, name="segmented_reduce_sum"):
"""
Sums a tensor over its segments. Outputs 0 for empty segments. This operations computes the sum over segments, with
support for:
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
- Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a sum of vectors
rather than scalars.
Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
Args:
values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be
averaged.
index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments.
name: Name for the TensorFlow ops.
Returns:
A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments,
V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments].
"""
return _segment_reduce(values, index, tf.math.unsorted_segment_sum, name)
def reduce_max(values, index, name="segmented_reduce_max"):
"""
Computes the maximum over segments. This operations computes the maximum over segments, with support for:
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
- Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be an element-wise
maximum of vectors rather than scalars.
Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
Args:
values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be
averaged.
index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments.
name: Name for the TensorFlow ops.
Returns:
A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments,
V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments].
"""
return _segment_reduce(values, index, tf.math.unsorted_segment_max, name)
def reduce_min(values, index, name="segmented_reduce_min"):
"""Computes the minimum over segments."""
return _segment_reduce(values, index, tf.math.unsorted_segment_min, name)
def _single_column_cell_selection_loss(token_logits, column_logits, labels, cell_index, col_index, cell_mask):
"""
Computes the loss for cell selection constrained to a single column. The loss is a hierarchical log-likelihood. The
model first predicts a column and then selects cells within that column (conditioned on the column). Cells outside
the selected column are never selected.
Args:
token_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Tensor containing the logits per token.
column_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, max_num_cols)`):
Tensor containing the logits per column.
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Labels per token.
cell_index (:obj:`ProductIndexMap`):
Index that groups tokens into cells.
col_index (:obj:`IndexMap`):
Index that groups tokens into columns.
cell_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, max_num_rows * max_num_cols)`):
Mask for cells that exist in the table (i.e. that are not padding).
Returns:
selection_loss_per_example (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`): Loss for each example. logits
(:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): New logits which are only allowed to select
cells in a single column. Logits outside of the most likely column according to `column_logits` will be set to
a very low value (such that the probabilities are 0).
"""
# First find the column we should select. We use the column with maximum
# number of selected cells.
labels_per_column, _ = reduce_sum(tf.cast(labels, tf.float32), col_index)
column_label = tf.argmax(labels_per_column, axis=-1, output_type=tf.int32)
# Check if there are no selected cells in the column. In that case the model
# should predict the special column id 0, which means "select nothing".
no_cell_selected = tf.equal(tf.reduce_max(labels_per_column, axis=-1), 0)
column_label = tf.where(no_cell_selected, tf.zeros_like(column_label), column_label)
column_dist = tfp.distributions.Categorical(logits=column_logits)
column_loss_per_example = -column_dist.log_prob(column_label)
# Reduce the labels and logits to per-cell from per-token.
logits_per_cell, _ = reduce_mean(token_logits, cell_index)
labels_per_cell, labels_index = reduce_max(tf.cast(labels, tf.int32), cell_index)
# Mask for the selected column.
column_id_for_cells = cell_index.project_inner(labels_index).indices
column_mask = tf.cast(tf.equal(column_id_for_cells, tf.expand_dims(column_label, axis=1)), tf.float32)
# Compute the log-likelihood for cells, but only for the selected column.
cell_dist = tfp.distributions.Bernoulli(logits=logits_per_cell)
cell_log_prob = cell_dist.log_prob(labels_per_cell)
cell_loss = -tf.reduce_sum(cell_log_prob * column_mask * cell_mask, axis=1)
# We need to normalize the loss by the number of cells in the column.
cell_loss /= tf.reduce_sum(column_mask * cell_mask, axis=1) + EPSILON_ZERO_DIVISION
selection_loss_per_example = column_loss_per_example
selection_loss_per_example += tf.where(no_cell_selected, tf.zeros_like(selection_loss_per_example), cell_loss)
# Set the probs outside the selected column (selected by the *model*)
# to 0. This ensures backwards compatibility with models that select
# cells from multiple columns.
selected_column_id = tf.argmax(column_logits, axis=-1, output_type=tf.int32)
selected_column_mask = tf.cast(
tf.equal(column_id_for_cells, tf.expand_dims(selected_column_id, axis=-1)), tf.float32
)
# Never select cells with the special column id 0.
selected_column_mask = tf.where(
tf.equal(column_id_for_cells, 0), tf.zeros_like(selected_column_mask), selected_column_mask
)
logits_per_cell += CLOSE_ENOUGH_TO_LOG_ZERO * (1.0 - cell_mask * selected_column_mask)
logits = gather(logits_per_cell, cell_index)
return selection_loss_per_example, logits
def _calculate_aggregate_mask(answer, pooled_output, cell_selection_preference, labels, aggregation_classifier):
"""
Finds examples where the model should select cells with no aggregation.
Returns a mask that determines for which examples should the model select answers directly from the table, without
any aggregation function. If the answer is a piece of text the case is unambiguous as aggregation functions only
apply to numbers. If the answer is a number but does not appear in the table then we must use some aggregation
case. The ambiguous case is when the answer is a number that also appears in the table. In this case we use the
aggregation function probabilities predicted by the model to decide whether to select or aggregate. The threshold
for this is a hyperparameter `cell_selection_preference`
Args:
answer (:obj:`tf.Tensor` of shape :obj:`(batch_size, )`):
Answer for every example in the batch. Nan if there is no scalar answer.
pooled_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, hidden_size)`):
Output of the pooler (BertPooler) on top of the encoder layer.
cell_selection_preference (:obj:`float`):
Preference for cell selection in ambiguous cases.
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Labels per token. aggregation_classifier (:obj:`torch.nn.Linear`): Aggregation head
Returns:
aggregate_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`): A mask set to 1 for examples that should use
aggregation functions.
"""
# tf.Tensor(batch_size,)
aggregate_mask_init = tf.cast(tf.logical_not(tf.math.is_nan(answer)), tf.float32)
logits_aggregation = aggregation_classifier(pooled_output)
dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation)
# Index 0 corresponds to "no aggregation".
aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1)
# Cell selection examples according to current model.
is_pred_cell_selection = aggregation_ops_total_mass <= cell_selection_preference
# Examples with non-empty cell selection supervision.
is_cell_supervision_available = tf.reduce_sum(labels, axis=1) > 0
aggregate_mask = tf.where(
tf.logical_and(is_pred_cell_selection, is_cell_supervision_available),
tf.zeros_like(aggregate_mask_init, dtype=tf.float32),
aggregate_mask_init,
)
aggregate_mask = tf.stop_gradient(aggregate_mask)
return aggregate_mask
def _calculate_aggregation_loss_known(
logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels
):
"""
Calculates aggregation loss when its type is known during training.
In the weakly supervised setting, the only known information is that for cell selection examples, "no aggregation"
should be predicted. For other examples (those that require aggregation), no loss is accumulated. In the setting
where aggregation type is always known, standard cross entropy loss is accumulated for all examples
Args:
logits_aggregation (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
aggregate_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, )`):
A mask set to 1 for examples that should use aggregation functions.
aggregation_labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, )`):
Aggregation function id for every example in the batch.
use_answer_as_supervision (:obj:`bool`, `optional`):
Whether to use the answer as the only supervision for aggregation examples.
num_aggregation_labels (:obj:`int`, `optional`, defaults to 0):
The number of aggregation operators to predict.
Returns:
aggregation_loss_known (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`): Aggregation loss (when its type is
known during training) per example.
"""
if use_answer_as_supervision:
# Prepare "no aggregation" targets for cell selection examples.
target_aggregation = tf.zeros_like(aggregate_mask, dtype=tf.int32)
else:
# Use aggregation supervision as the target.
target_aggregation = aggregation_labels
one_hot_labels = tf.one_hot(target_aggregation, depth=num_aggregation_labels, dtype=tf.float32)
log_probs = tf.nn.log_softmax(logits_aggregation, axis=-1)
# <float32>[batch_size]
per_example_aggregation_intermediate = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
if use_answer_as_supervision:
# Accumulate loss only for examples requiring cell selection
# (no aggregation).
return per_example_aggregation_intermediate * (1 - aggregate_mask)
else:
return per_example_aggregation_intermediate
def _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask):
"""
Calculates aggregation loss in the case of answer supervision.
Args:
logits_aggregation (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
aggregate_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, )`):
A mask set to 1 for examples that should use aggregation functions
Returns:
aggregation_loss_unknown (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`): Aggregation loss (in case of answer
supervision) per example.
"""
dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation)
# Index 0 corresponds to "no aggregation".
aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1)
# Predict some aggregation in case of an answer that needs aggregation.
# This increases the probability of all aggregation functions, in a way
# similar to MML, but without considering whether the function gives the
# correct answer.
return -tf.math.log(aggregation_ops_total_mass) * aggregate_mask
def _calculate_aggregation_loss(
logits_aggregation,
aggregate_mask,
aggregation_labels,
use_answer_as_supervision,
num_aggregation_labels,
aggregation_loss_weight,
):
"""
Calculates the aggregation loss per example.
Args:
logits_aggregation (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
aggregate_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, )`):
A mask set to 1 for examples that should use aggregation functions.
aggregation_labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, )`):
Aggregation function id for every example in the batch.
use_answer_as_supervision (:obj:`bool`, `optional`):
Whether to use the answer as the only supervision for aggregation examples.
num_aggregation_labels (:obj:`int`, `optional`, defaults to 0):
The number of aggregation operators to predict.
aggregation_loss_weight (:obj:`float`, `optional`, defaults to 1.0):
Importance weight for the aggregation loss.
Returns:
aggregation_loss (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`): Aggregation loss per example.
"""
per_example_aggregation_loss = _calculate_aggregation_loss_known(
logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels
)
if use_answer_as_supervision:
# Add aggregation loss for numeric answers that need aggregation.
per_example_aggregation_loss += _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask)
return aggregation_loss_weight * per_example_aggregation_loss
def _calculate_expected_result(
dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config
):
"""
Calculates the expected result given cell and aggregation probabilities.
Args:
dist_per_cell (:obj:`tfp.distributions.Bernoulli`):
Cell selection distribution for each cell.
numeric_values (:obj:`tf.Tensor` of shape :obj:`(batch_size, seq_length)`):
Numeric values of every token. Nan for tokens which are not numeric values.
numeric_values_scale (:obj:`tf.Tensor` of shape :obj:`(batch_size, seq_length)`):
Scale of the numeric values of every token.
input_mask_float (:obj: `tf.Tensor` of shape :obj:`(batch_size, seq_length)`):
Mask for the table, without question tokens and table headers.
logits_aggregation (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
config (:class:`~transformers.TapasConfig`):
Model configuration class with all the hyperparameters of the model
Returns:
expected_result (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`): The expected result per example.
"""
if config.use_gumbel_for_cells:
gumbel_dist = tfp.distributions.RelaxedBernoulli(
# The token logits where already divided by the temperature and used for
# computing cell selection errors so we need to multiply it again here
config.temperature,
logits=dist_per_cell.logits_parameter() * config.temperature,
)
scaled_probability_per_cell = gumbel_dist.sample()
else:
scaled_probability_per_cell = dist_per_cell.probs_parameter()
# <float32>[batch_size, seq_length]
scaled_probability_per_cell = (scaled_probability_per_cell / numeric_values_scale) * input_mask_float
count_result = tf.reduce_sum(scaled_probability_per_cell, axis=1)
numeric_values_masked = tf.where(
tf.math.is_nan(numeric_values), tf.zeros_like(numeric_values), numeric_values
) # Mask non-numeric table values to zero.
sum_result = tf.reduce_sum(scaled_probability_per_cell * numeric_values_masked, axis=1)
avg_approximation = config.average_approximation_function
if avg_approximation == AverageApproximationFunction.RATIO:
average_result = sum_result / (count_result + EPSILON_ZERO_DIVISION)
elif avg_approximation == AverageApproximationFunction.FIRST_ORDER:
# The sum of all probabilities exept that correspond to other cells
ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1
average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell / ex, axis=1)
elif avg_approximation == AverageApproximationFunction.SECOND_ORDER:
# The sum of all probabilities exept that correspond to other cells
ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1
pointwise_var = scaled_probability_per_cell * (1 - scaled_probability_per_cell)
var = tf.reduce_sum(pointwise_var, axis=1, keepdims=True) - pointwise_var
multiplier = (var / tf.math.square(ex) + 1) / ex
average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell * multiplier, axis=1)
else:
raise ValueError("Invalid average_approximation_function: %s", config.average_approximation_function)
if config.use_gumbel_for_aggregation:
gumbel_dist = tfp.distributions.RelaxedOneHotCategorical(
config.aggregation_temperature, logits=logits_aggregation[:, 1:]
)
# <float32>[batch_size, num_aggregation_labels - 1]
aggregation_op_only_probs = gumbel_dist.sample()
else:
# <float32>[batch_size, num_aggregation_labels - 1]
aggregation_op_only_probs = tf.nn.softmax(logits_aggregation[:, 1:] / config.aggregation_temperature, axis=-1)
all_results = tf.concat(
[
tf.expand_dims(sum_result, axis=1),
tf.expand_dims(average_result, axis=1),
tf.expand_dims(count_result, axis=1),
],
axis=1,
)
expected_result = tf.reduce_sum(all_results * aggregation_op_only_probs, axis=1)
return expected_result
def _calculate_regression_loss(
answer,
aggregate_mask,
dist_per_cell,
numeric_values,
numeric_values_scale,
input_mask_float,
logits_aggregation,
config,
):
"""
Calculates the regression loss per example.
Args:
answer (:obj: `tf.Tensor` of shape :obj:`(batch_size,)`):
Answer for every example in the batch. Nan if there is no scalar answer.
aggregate_mask (:obj: `tf.Tensor` of shape :obj:`(batch_size,)`):
A mask set to 1 for examples that should use aggregation functions.
dist_per_cell (:obj:`torch.distributions.Bernoulli`):
Cell selection distribution for each cell.
numeric_values (:obj:`tf.Tensor` of shape :obj:`(batch_size, seq_length)`):
Numeric values of every token. Nan for tokens which are not numeric values.
numeric_values_scale (:obj:`tf.Tensor` of shape :obj:`(batch_size, seq_length)`):
Scale of the numeric values of every token.
input_mask_float (:obj: `tf.Tensor` of shape :obj:`(batch_size, seq_length)`):
Mask for the table, without question tokens and table headers.
logits_aggregation (:obj: `tf.Tensor` of shape :obj:`(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
config (:class:`~transformers.TapasConfig`):
Model configuration class with all the parameters of the model
Returns:
per_example_answer_loss_scaled (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`): Scales answer loss for each
example in the batch. large_answer_loss_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`): A mask which is
1 for examples for which their answer loss is larger than the answer_loss_cutoff.
"""
# float32 (batch_size,)
expected_result = _calculate_expected_result(
dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config
)
# <float32>[batch_size]
answer_masked = tf.where(tf.math.is_nan(answer), tf.zeros_like(answer), answer)
if config.use_normalized_answer_loss:
normalizer = tf.stop_gradient(
tf.math.maximum(tf.math.abs(expected_result), tf.math.abs(answer_masked)) + EPSILON_ZERO_DIVISION
)
normalized_answer_masked = answer_masked / normalizer
normalized_expected_result = expected_result / normalizer
per_example_answer_loss = tf.compat.v1.losses.huber_loss(
normalized_answer_masked * aggregate_mask,
normalized_expected_result * aggregate_mask,
delta=tf.cast(1.0, tf.float32),
reduction=tf.losses.Reduction.NONE,
)
else:
per_example_answer_loss = tf.compat.v1.losses.huber_loss(
answer_masked * aggregate_mask,
expected_result * aggregate_mask,
delta=tf.cast(config.huber_loss_delta, tf.float32),
reduction=tf.losses.Reduction.NONE,
)
if config.answer_loss_cutoff is None:
large_answer_loss_mask = tf.ones_like(per_example_answer_loss, dtype=tf.float32)
else:
large_answer_loss_mask = tf.where(
per_example_answer_loss > config.answer_loss_cutoff,
tf.zeros_like(per_example_answer_loss, dtype=tf.float32),
tf.ones_like(per_example_answer_loss, dtype=tf.float32),
)
per_example_answer_loss_scaled = config.answer_loss_importance * (per_example_answer_loss * aggregate_mask)
return per_example_answer_loss_scaled, large_answer_loss_mask
...@@ -1897,9 +1897,9 @@ class TapasTokenizer(PreTrainedTokenizer): ...@@ -1897,9 +1897,9 @@ class TapasTokenizer(PreTrainedTokenizer):
data (:obj:`dict`): data (:obj:`dict`):
Dictionary mapping features to actual values. Should be created using Dictionary mapping features to actual values. Should be created using
:class:`~transformers.TapasTokenizer`. :class:`~transformers.TapasTokenizer`.
logits (:obj:`np.ndarray` of shape ``(batch_size, sequence_length)``): logits (:obj:`torch.Tensor` or :obj:`tf.Tensor` of shape ``(batch_size, sequence_length)``):
Tensor containing the logits at the token level. Tensor containing the logits at the token level.
logits_agg (:obj:`np.ndarray` of shape ``(batch_size, num_aggregation_labels)``, `optional`): logits_agg (:obj:`torch.Tensor` or :obj:`tf.Tensor` of shape ``(batch_size, num_aggregation_labels)``, `optional`):
Tensor containing the aggregation logits. Tensor containing the aggregation logits.
cell_classification_threshold (:obj:`float`, `optional`, defaults to 0.5): cell_classification_threshold (:obj:`float`, `optional`, defaults to 0.5):
Threshold to be used for cell selection. All table cells for which their probability is larger than Threshold to be used for cell selection. All table cells for which their probability is larger than
...@@ -1915,6 +1915,11 @@ class TapasTokenizer(PreTrainedTokenizer): ...@@ -1915,6 +1915,11 @@ class TapasTokenizer(PreTrainedTokenizer):
- predicted_aggregation_indices (``List[int]``of length ``batch_size``, `optional`, returned when - predicted_aggregation_indices (``List[int]``of length ``batch_size``, `optional`, returned when
``logits_aggregation`` is provided): Predicted aggregation operator indices of the aggregation head. ``logits_aggregation`` is provided): Predicted aggregation operator indices of the aggregation head.
""" """
# converting to numpy arrays to work with PT/TF
logits = logits.numpy()
if logits_agg is not None:
logits_agg = logits_agg.numpy()
data = {key: value.numpy() for key, value in data.items() if key != "training"}
# input data is of type float32 # input data is of type float32
# np.log(np.finfo(np.float32).max) = 88.72284 # np.log(np.finfo(np.float32).max) = 88.72284
# Any value over 88.72284 will overflow when passed through the exponential, sending a warning # Any value over 88.72284 will overflow when passed through the exponential, sending a warning
...@@ -1975,7 +1980,7 @@ class TapasTokenizer(PreTrainedTokenizer): ...@@ -1975,7 +1980,7 @@ class TapasTokenizer(PreTrainedTokenizer):
output = (predicted_answer_coordinates,) output = (predicted_answer_coordinates,)
if logits_agg is not None: if logits_agg is not None:
predicted_aggregation_indices = logits_agg.argmax(dim=-1) predicted_aggregation_indices = logits_agg.argmax(axis=-1)
output = (predicted_answer_coordinates, predicted_aggregation_indices.tolist()) output = (predicted_answer_coordinates, predicted_aggregation_indices.tolist())
return output return output
......
...@@ -78,6 +78,7 @@ if is_tf_available(): ...@@ -78,6 +78,7 @@ if is_tf_available():
TFAutoModelForQuestionAnswering, TFAutoModelForQuestionAnswering,
TFAutoModelForSeq2SeqLM, TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification, TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification, TFAutoModelForTokenClassification,
) )
...@@ -170,7 +171,7 @@ SUPPORTED_TASKS = { ...@@ -170,7 +171,7 @@ SUPPORTED_TASKS = {
"table-question-answering": { "table-question-answering": {
"impl": TableQuestionAnsweringPipeline, "impl": TableQuestionAnsweringPipeline,
"pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (), "pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
"tf": (), "tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
"default": { "default": {
"model": { "model": {
"pt": "google/tapas-base-finetuned-wtq", "pt": "google/tapas-base-finetuned-wtq",
......
...@@ -2,7 +2,13 @@ import collections ...@@ -2,7 +2,13 @@ import collections
import numpy as np import numpy as np
from ..file_utils import add_end_docstrings, is_torch_available, requires_backends from ..file_utils import (
add_end_docstrings,
is_tensorflow_probability_available,
is_tf_available,
is_torch_available,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, Pipeline, PipelineException from .base import PIPELINE_INIT_ARGS, ArgumentHandler, Pipeline, PipelineException
...@@ -11,6 +17,13 @@ if is_torch_available(): ...@@ -11,6 +17,13 @@ if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING from ..models.auto.modeling_auto import MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
if is_tf_available() and is_tensorflow_probability_available():
import tensorflow as tf
import tensorflow_probability as tfp
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
class TableQuestionAnsweringArgumentHandler(ArgumentHandler): class TableQuestionAnsweringArgumentHandler(ArgumentHandler):
""" """
...@@ -83,10 +96,11 @@ class TableQuestionAnsweringPipeline(Pipeline): ...@@ -83,10 +96,11 @@ class TableQuestionAnsweringPipeline(Pipeline):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self._args_parser = args_parser self._args_parser = args_parser
if self.framework == "tf": self.check_model_type(
raise ValueError("The TableQuestionAnsweringPipeline is only available in PyTorch.") TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
if self.framework == "tf"
self.check_model_type(MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING) else MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
)
self.aggregate = bool(getattr(self.model.config, "aggregation_labels")) and bool( self.aggregate = bool(getattr(self.model.config, "aggregation_labels")) and bool(
getattr(self.model.config, "num_aggregation_labels") getattr(self.model.config, "num_aggregation_labels")
...@@ -100,67 +114,129 @@ class TableQuestionAnsweringPipeline(Pipeline): ...@@ -100,67 +114,129 @@ class TableQuestionAnsweringPipeline(Pipeline):
Inference used for models that need to process sequences in a sequential fashion, like the SQA models which Inference used for models that need to process sequences in a sequential fashion, like the SQA models which
handle conversational query related to a table. handle conversational query related to a table.
""" """
all_logits = [] if self.framework == "pt":
all_aggregations = [] all_logits = []
prev_answers = None all_aggregations = []
batch_size = inputs["input_ids"].shape[0] prev_answers = None
batch_size = inputs["input_ids"].shape[0]
input_ids = inputs["input_ids"].to(self.device)
attention_mask = inputs["attention_mask"].to(self.device) input_ids = inputs["input_ids"].to(self.device)
token_type_ids = inputs["token_type_ids"].to(self.device) attention_mask = inputs["attention_mask"].to(self.device)
token_type_ids_example = None token_type_ids = inputs["token_type_ids"].to(self.device)
token_type_ids_example = None
for index in range(batch_size):
# If sequences have already been processed, the token type IDs will be created according to the previous for index in range(batch_size):
# answer. # If sequences have already been processed, the token type IDs will be created according to the previous
if prev_answers is not None: # answer.
prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,) if prev_answers is not None:
model_labels = np.zeros_like(prev_labels_example.cpu().numpy()) # shape (seq_len,) prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,)
model_labels = np.zeros_like(prev_labels_example.cpu().numpy()) # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
for i in range(model_labels.shape[0]):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col_id = token_type_ids_example[:, 1].tolist()[i] - 1
row_id = token_type_ids_example[:, 2].tolist()[i] - 1
if row_id >= 0 and col_id >= 0 and segment_id == 1:
model_labels[i] = int(prev_answers[(col_id, row_id)])
token_type_ids_example[:, 3] = torch.from_numpy(model_labels).type(torch.long).to(self.device)
input_ids_example = input_ids[index]
attention_mask_example = attention_mask[index] # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
for i in range(model_labels.shape[0]): outputs = self.model(
input_ids=input_ids_example.unsqueeze(0),
attention_mask=attention_mask_example.unsqueeze(0),
token_type_ids=token_type_ids_example.unsqueeze(0),
)
logits = outputs.logits
if self.aggregate:
all_aggregations.append(outputs.logits_aggregation)
all_logits.append(logits)
dist_per_token = torch.distributions.Bernoulli(logits=logits)
probabilities = dist_per_token.probs * attention_mask_example.type(torch.float32).to(
dist_per_token.probs.device
)
coords_to_probs = collections.defaultdict(list)
for i, p in enumerate(probabilities.squeeze().tolist()):
segment_id = token_type_ids_example[:, 0].tolist()[i] segment_id = token_type_ids_example[:, 0].tolist()[i]
col_id = token_type_ids_example[:, 1].tolist()[i] - 1 col = token_type_ids_example[:, 1].tolist()[i] - 1
row_id = token_type_ids_example[:, 2].tolist()[i] - 1 row = token_type_ids_example[:, 2].tolist()[i] - 1
if col >= 0 and row >= 0 and segment_id == 1:
coords_to_probs[(col, row)].append(p)
if row_id >= 0 and col_id >= 0 and segment_id == 1: prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs}
model_labels[i] = int(prev_answers[(col_id, row_id)])
token_type_ids_example[:, 3] = torch.from_numpy(model_labels).type(torch.long).to(self.device) logits_batch = torch.cat(tuple(all_logits), 0)
input_ids_example = input_ids[index] return (logits_batch,) if not self.aggregate else (logits_batch, torch.cat(tuple(all_aggregations), 0))
attention_mask_example = attention_mask[index] # shape (seq_len,) else:
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) all_logits = []
outputs = self.model( all_aggregations = []
input_ids=input_ids_example.unsqueeze(0), prev_answers = None
attention_mask=attention_mask_example.unsqueeze(0), batch_size = inputs["input_ids"].shape[0]
token_type_ids=token_type_ids_example.unsqueeze(0),
) input_ids = inputs["input_ids"]
logits = outputs.logits attention_mask = inputs["attention_mask"]
token_type_ids = inputs["token_type_ids"].numpy()
token_type_ids_example = None
for index in range(batch_size):
# If sequences have already been processed, the token type IDs will be created according to the previous
# answer.
if prev_answers is not None:
prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,)
model_labels = np.zeros_like(prev_labels_example, dtype=np.int32) # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
for i in range(model_labels.shape[0]):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col_id = token_type_ids_example[:, 1].tolist()[i] - 1
row_id = token_type_ids_example[:, 2].tolist()[i] - 1
if row_id >= 0 and col_id >= 0 and segment_id == 1:
model_labels[i] = int(prev_answers[(col_id, row_id)])
token_type_ids_example[:, 3] = model_labels
input_ids_example = input_ids[index]
attention_mask_example = attention_mask[index] # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
outputs = self.model(
input_ids=np.expand_dims(input_ids_example, axis=0),
attention_mask=np.expand_dims(attention_mask_example, axis=0),
token_type_ids=np.expand_dims(token_type_ids_example, axis=0),
)
logits = outputs.logits
if self.aggregate: if self.aggregate:
all_aggregations.append(outputs.logits_aggregation) all_aggregations.append(outputs.logits_aggregation)
all_logits.append(logits) all_logits.append(logits)
dist_per_token = torch.distributions.Bernoulli(logits=logits) dist_per_token = tfp.distributions.Bernoulli(logits=logits)
probabilities = dist_per_token.probs * attention_mask_example.type(torch.float32).to( probabilities = dist_per_token.probs_parameter() * tf.cast(attention_mask_example, tf.float32)
dist_per_token.probs.device
)
coords_to_probs = collections.defaultdict(list) coords_to_probs = collections.defaultdict(list)
for i, p in enumerate(probabilities.squeeze().tolist()): token_type_ids_example = token_type_ids_example
segment_id = token_type_ids_example[:, 0].tolist()[i] for i, p in enumerate(tf.squeeze(probabilities).numpy().tolist()):
col = token_type_ids_example[:, 1].tolist()[i] - 1 segment_id = token_type_ids_example[:, 0].tolist()[i]
row = token_type_ids_example[:, 2].tolist()[i] - 1 col = token_type_ids_example[:, 1].tolist()[i] - 1
if col >= 0 and row >= 0 and segment_id == 1: row = token_type_ids_example[:, 2].tolist()[i] - 1
coords_to_probs[(col, row)].append(p) if col >= 0 and row >= 0 and segment_id == 1:
coords_to_probs[(col, row)].append(p)
prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs} prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs}
logits_batch = torch.cat(tuple(all_logits), 0) logits_batch = tf.concat(tuple(all_logits), 0)
return (logits_batch,) if not self.aggregate else (logits_batch, torch.cat(tuple(all_aggregations), 0)) return (logits_batch,) if not self.aggregate else (logits_batch, tf.concat(tuple(all_aggregations), 0))
def __call__(self, *args, **kwargs): def __call__(self, *args, **kwargs):
r""" r"""
...@@ -274,7 +350,7 @@ class TableQuestionAnsweringPipeline(Pipeline): ...@@ -274,7 +350,7 @@ class TableQuestionAnsweringPipeline(Pipeline):
outputs = model_outputs["outputs"] outputs = model_outputs["outputs"]
if self.aggregate: if self.aggregate:
logits, logits_agg = outputs[:2] logits, logits_agg = outputs[:2]
predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits.detach(), logits_agg) predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits, logits_agg)
answer_coordinates_batch, agg_predictions = predictions answer_coordinates_batch, agg_predictions = predictions
aggregators = {i: self.model.config.aggregation_labels[pred] for i, pred in enumerate(agg_predictions)} aggregators = {i: self.model.config.aggregation_labels[pred] for i, pred in enumerate(agg_predictions)}
...@@ -284,7 +360,7 @@ class TableQuestionAnsweringPipeline(Pipeline): ...@@ -284,7 +360,7 @@ class TableQuestionAnsweringPipeline(Pipeline):
} }
else: else:
logits = outputs[0] logits = outputs[0]
predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits.detach()) predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits)
answer_coordinates_batch = predictions[0] answer_coordinates_batch = predictions[0]
aggregators = {} aggregators = {}
aggregators_prefix = {} aggregators_prefix = {}
......
...@@ -44,6 +44,7 @@ from .file_utils import ( ...@@ -44,6 +44,7 @@ from .file_utils import (
is_scatter_available, is_scatter_available,
is_sentencepiece_available, is_sentencepiece_available,
is_soundfile_availble, is_soundfile_availble,
is_tensorflow_probability_available,
is_tf_available, is_tf_available,
is_timm_available, is_timm_available,
is_tokenizers_available, is_tokenizers_available,
...@@ -292,6 +293,19 @@ def require_torch_scatter(test_case): ...@@ -292,6 +293,19 @@ def require_torch_scatter(test_case):
return test_case return test_case
def require_tensorflow_probability(test_case):
"""
Decorator marking a test that requires TensorFlow probability.
These tests are skipped when TensorFlow probability isn't installed.
"""
if not is_tensorflow_probability_available():
return unittest.skip("test requires TensorFlow probability")(test_case)
else:
return test_case
def require_torchaudio(test_case): def require_torchaudio(test_case):
""" """
Decorator marking a test that requires torchaudio. These tests are skipped when torchaudio isn't installed. Decorator marking a test that requires torchaudio. These tests are skipped when torchaudio isn't installed.
......
...@@ -239,6 +239,9 @@ TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None ...@@ -239,6 +239,9 @@ TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None
...@@ -356,6 +359,18 @@ class TFAutoModelForSequenceClassification: ...@@ -356,6 +359,18 @@ class TFAutoModelForSequenceClassification:
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
class TFAutoModelForTableQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["tf"])
def call(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForTokenClassification: class TFAutoModelForTokenClassification:
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
...@@ -2488,6 +2503,69 @@ class TFT5PreTrainedModel: ...@@ -2488,6 +2503,69 @@ class TFT5PreTrainedModel:
requires_backends(self, ["tf"]) requires_backends(self, ["tf"])
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFTapasForMaskedLM:
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["tf"])
def call(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTapasForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["tf"])
def call(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTapasForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["tf"])
def call(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTapasModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["tf"])
def call(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTapasPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["tf"])
def call(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
...@@ -17,8 +17,14 @@ import copy ...@@ -17,8 +17,14 @@ import copy
import tempfile import tempfile
import unittest import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPT2Config, T5Config, is_tf_available from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPT2Config, T5Config, TapasConfig, is_tf_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_tf, slow from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
require_tensorflow_probability,
require_tf,
slow,
)
from .test_modeling_bert import BertModelTester from .test_modeling_bert import BertModelTester
...@@ -32,6 +38,7 @@ if is_tf_available(): ...@@ -32,6 +38,7 @@ if is_tf_available():
TFAutoModelForQuestionAnswering, TFAutoModelForQuestionAnswering,
TFAutoModelForSeq2SeqLM, TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification, TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification, TFAutoModelForTokenClassification,
TFAutoModelWithLMHead, TFAutoModelWithLMHead,
TFBertForMaskedLM, TFBertForMaskedLM,
...@@ -44,6 +51,7 @@ if is_tf_available(): ...@@ -44,6 +51,7 @@ if is_tf_available():
TFGPT2LMHeadModel, TFGPT2LMHeadModel,
TFRobertaForMaskedLM, TFRobertaForMaskedLM,
TFT5ForConditionalGeneration, TFT5ForConditionalGeneration,
TFTapasForQuestionAnswering,
) )
from transformers.models.auto.modeling_tf_auto import ( from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING,
...@@ -52,6 +60,7 @@ if is_tf_available(): ...@@ -52,6 +60,7 @@ if is_tf_available():
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING, TF_MODEL_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING,
...@@ -59,6 +68,7 @@ if is_tf_available(): ...@@ -59,6 +68,7 @@ if is_tf_available():
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class NewModelConfig(BertConfig): class NewModelConfig(BertConfig):
...@@ -176,6 +186,21 @@ class TFAutoModelTest(unittest.TestCase): ...@@ -176,6 +186,21 @@ class TFAutoModelTest(unittest.TestCase):
self.assertIsNotNone(model) self.assertIsNotNone(model)
self.assertIsInstance(model, TFBertForQuestionAnswering) self.assertIsInstance(model, TFBertForQuestionAnswering)
@slow
@require_tensorflow_probability
def test_table_question_answering_model_from_pretrained(self):
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, TapasConfig)
model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_name)
model, loading_info = TFAutoModelForTableQuestionAnswering.from_pretrained(
model_name, output_loading_info=True
)
self.assertIsNotNone(model)
self.assertIsInstance(model, TFTapasForQuestionAnswering)
def test_from_pretrained_identifier(self): def test_from_pretrained_identifier(self):
model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(model, TFBertForMaskedLM) self.assertIsInstance(model, TFBertForMaskedLM)
...@@ -210,6 +235,7 @@ class TFAutoModelTest(unittest.TestCase): ...@@ -210,6 +235,7 @@ class TFAutoModelTest(unittest.TestCase):
TF_MODEL_MAPPING, TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING,
......
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
import numpy as np
import pandas as pd
from transformers import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TapasConfig,
TapasTokenizer,
is_tf_available,
)
from transformers.file_utils import cached_property
from transformers.models.auto import get_values
from transformers.testing_utils import require_tensorflow_probability, require_tf, slow
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
if is_tf_available():
import tensorflow as tf
from transformers import (
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
)
from transformers.models.tapas.modeling_tf_tapas import (
IndexMap,
ProductIndexMap,
flatten,
gather,
range_index_map,
reduce_max,
reduce_mean,
reduce_sum,
)
class TFTapasModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
max_position_embeddings=512,
type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10],
type_sequence_label_size=2,
positive_weight=10.0,
num_aggregation_labels=4,
num_labels=2,
aggregation_loss_importance=0.8,
use_answer_as_supervision=True,
answer_loss_importance=0.001,
use_normalized_answer_loss=False,
huber_loss_delta=25.0,
temperature=1.0,
agg_temperature=1.0,
use_gumbel_for_cells=False,
use_gumbel_for_agg=False,
average_approximation_function="ratio",
cell_selection_preference=0.5,
answer_loss_cutoff=100,
max_num_rows=64,
max_num_columns=32,
average_logits_per_cell=True,
select_one_column=True,
allow_empty_column_selection=False,
init_cell_selection_weights_to_zero=True,
reset_position_index_per_cell=True,
disable_per_token_loss=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.max_position_embeddings = max_position_embeddings
self.type_vocab_sizes = type_vocab_sizes
self.type_sequence_label_size = type_sequence_label_size
self.positive_weight = positive_weight
self.num_aggregation_labels = num_aggregation_labels
self.num_labels = num_labels
self.aggregation_loss_importance = aggregation_loss_importance
self.use_answer_as_supervision = use_answer_as_supervision
self.answer_loss_importance = answer_loss_importance
self.use_normalized_answer_loss = use_normalized_answer_loss
self.huber_loss_delta = huber_loss_delta
self.temperature = temperature
self.agg_temperature = agg_temperature
self.use_gumbel_for_cells = use_gumbel_for_cells
self.use_gumbel_for_agg = use_gumbel_for_agg
self.average_approximation_function = average_approximation_function
self.cell_selection_preference = cell_selection_preference
self.answer_loss_cutoff = answer_loss_cutoff
self.max_num_rows = max_num_rows
self.max_num_columns = max_num_columns
self.average_logits_per_cell = average_logits_per_cell
self.select_one_column = select_one_column
self.allow_empty_column_selection = allow_empty_column_selection
self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero
self.reset_position_index_per_cell = reset_position_index_per_cell
self.disable_per_token_loss = disable_per_token_loss
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = []
for type_vocab_size in self.type_vocab_sizes:
token_type_ids.append(ids_tensor(shape=[self.batch_size, self.seq_length], vocab_size=type_vocab_size))
token_type_ids = tf.stack(token_type_ids, axis=2)
sequence_labels = None
token_labels = None
labels = None
numeric_values = None
numeric_values_scale = None
float_answer = None
aggregation_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
labels = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
numeric_values = ids_tensor([self.batch_size, self.seq_length], vocab_size=2, dtype=tf.float32)
numeric_values_scale = ids_tensor([self.batch_size, self.seq_length], vocab_size=2, dtype=tf.float32)
float_answer = ids_tensor([self.batch_size], vocab_size=2, dtype=tf.float32)
aggregation_labels = ids_tensor([self.batch_size], self.num_aggregation_labels)
config = self.get_config()
return (
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
)
def get_config(self):
return TapasConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_sizes=self.type_vocab_sizes,
initializer_range=self.initializer_range,
positive_weight=self.positive_weight,
num_aggregation_labels=self.num_aggregation_labels,
num_labels=self.num_labels,
aggregation_loss_importance=self.aggregation_loss_importance,
use_answer_as_supervision=self.use_answer_as_supervision,
answer_loss_importance=self.answer_loss_importance,
use_normalized_answer_loss=self.use_normalized_answer_loss,
huber_loss_delta=self.huber_loss_delta,
temperature=self.temperature,
agg_temperature=self.agg_temperature,
use_gumbel_for_cells=self.use_gumbel_for_cells,
use_gumbel_for_agg=self.use_gumbel_for_agg,
average_approximation_function=self.average_approximation_function,
cell_selection_preference=self.cell_selection_preference,
answer_loss_cutoff=self.answer_loss_cutoff,
max_num_rows=self.max_num_rows,
max_num_columns=self.max_num_columns,
average_logits_per_cell=self.average_logits_per_cell,
select_one_column=self.select_one_column,
allow_empty_column_selection=self.allow_empty_column_selection,
init_cell_selection_weights_to_zero=self.init_cell_selection_weights_to_zero,
reset_position_index_per_cell=self.reset_position_index_per_cell,
disable_per_token_loss=self.disable_per_token_loss,
)
def create_and_check_model(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
model = TFTapasModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
inputs.pop("attention_mask")
result = model(inputs)
inputs.pop("token_type_ids")
result = model(inputs)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
model = TFTapasForMaskedLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"labels": token_labels,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
config.num_labels = self.num_labels
model = TFTapasForSequenceClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"labels": sequence_labels,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_question_answering(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
# inference: without aggregation head (SQA). Model only returns logits
sqa_config = copy.copy(config)
sqa_config.num_aggregation_labels = 0
sqa_config.use_answer_as_supervision = False
model = TFTapasForQuestionAnswering(config=sqa_config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
# inference: with aggregation head (WTQ, WikiSQL-supervised). Model returns logits and aggregation logits
model = TFTapasForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
# training: can happen in 3 main ways
# case 1: conversational (SQA)
model = TFTapasForQuestionAnswering(config=sqa_config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"labels": labels,
}
result = model(inputs)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
# case 2: weak supervision for aggregation (WTQ)
model = TFTapasForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"labels": labels,
"numeric_values": numeric_values,
"numeric_values_scale": numeric_values_scale,
"float_answer": float_answer,
}
result = model(inputs)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
# case 3: strong supervision for aggregation (WikiSQL-supervised)
wikisql_config = copy.copy(config)
wikisql_config.use_answer_as_supervision = False
model = TFTapasForQuestionAnswering(config=wikisql_config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"labels": labels,
"aggregation_labels": aggregation_labels,
}
result = model(inputs)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tensorflow_probability
@require_tf
class TFTapasModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFTapasModel,
TFTapasForMaskedLM,
TFTapasForSequenceClassification,
TFTapasForQuestionAnswering,
)
if is_tf_available()
else ()
)
test_head_masking = False
test_onnx = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
inputs_dict = copy.deepcopy(inputs_dict)
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict = {
k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
if isinstance(v, tf.Tensor) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in get_values(TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING):
inputs_dict["labels"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
)
inputs_dict["aggregation_labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
inputs_dict["numeric_values"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.float32
)
inputs_dict["numeric_values_scale"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.float32
)
inputs_dict["float_answer"] = tf.zeros(self.model_tester.batch_size, dtype=tf.float32)
elif model_class in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in [
*get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
*get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
*get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
*get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
*get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
]:
inputs_dict["labels"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
)
return inputs_dict
def setUp(self):
self.model_tester = TFTapasModelTester(self)
self.config_tester = ConfigTester(self, config_class=TapasConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def prepare_tapas_single_inputs_for_inference():
# Here we prepare a single table-question pair to test TAPAS inference on:
data = {
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
"Age": ["33", "35"],
}
queries = "Which footballer is 33 years old?"
table = pd.DataFrame.from_dict(data)
return table, queries
def prepare_tapas_batch_inputs_for_inference():
# Here we prepare a batch of 2 table-question pairs to test TAPAS inference on:
data = {
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
"Age": ["33", "35"],
"Number of goals": ["712", "750"],
}
queries = ["Which footballer is 33 years old?", "How many goals does Ronaldo have?"]
table = pd.DataFrame.from_dict(data)
return table, queries
def prepare_tapas_batch_inputs_for_training():
# Here we prepare a DIFFERENT batch of 2 table-question pairs to test TAPAS training on:
data = {
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
"Age": ["33", "35"],
"Number of goals": ["712", "750"],
}
queries = ["Which footballer is 33 years old?", "What's the total number of goals?"]
table = pd.DataFrame.from_dict(data)
answer_coordinates = [[(0, 0)], [(0, 2), (1, 2)]]
answer_text = [["Lionel Messi"], ["1462"]]
float_answer = [float("NaN"), float("1462")]
return table, queries, answer_coordinates, answer_text, float_answer
@require_tensorflow_probability
@require_tf
class TFTapasModelIntegrationTest(unittest.TestCase):
@cached_property
def default_tokenizer(self):
return TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq")
@slow
def test_inference_no_head(self):
# ideally we want to test this with the weights of tapas_inter_masklm_base_reset,
# but since it's not straightforward to do this with the TF 1 implementation, we test it with
# the weights of the WTQ base model (i.e. tapas_wtq_wikisql_sqa_inter_masklm_base_reset)
model = TFTapasModel.from_pretrained("google/tapas-base-finetuned-wtq")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the sequence output
expected_slice = tf.constant(
[
[
[-0.141581565, -0.599805772, 0.747186482],
[-0.143664181, -0.602008104, 0.749218345],
[-0.15169853, -0.603363097, 0.741370678],
]
]
)
tf.debugging.assert_near(outputs.last_hidden_state[:, :3, :3], expected_slice, atol=0.0005)
# test the pooled output
expected_slice = tf.constant([[0.987518311, -0.970520139, -0.994303405]])
tf.debugging.assert_near(outputs.pooler_output[:, :3], expected_slice, atol=0.0005)
@unittest.skip(reason="Model not available yet")
def test_inference_masked_lm(self):
pass
# TapasForQuestionAnswering has 3 possible ways of being fine-tuned:
# - conversational set-up (SQA)
# - weak supervision for aggregation (WTQ, WikiSQL)
# - strong supervision for aggregation (WikiSQL-supervised)
# We test all of them:
@slow
def test_inference_question_answering_head_conversational(self):
# note that google/tapas-base-finetuned-sqa should correspond to tapas_sqa_inter_masklm_base_reset
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-sqa")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = tf.TensorShape([1, 21])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-16.262585,
-10004.089,
15.435196,
15.435196,
15.435196,
-9990.443,
-16.327433,
-16.327433,
-16.327433,
-16.327433,
-16.327433,
-10004.84,
]
]
)
tf.debugging.assert_near(logits, expected_slice, atol=0.015)
@slow
def test_inference_question_answering_head_conversational_absolute_embeddings(self):
# note that google/tapas-small-finetuned-sqa should correspond to tapas_sqa_inter_masklm_small_reset
# however here we test the version with absolute position embeddings
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-small-finetuned-sqa")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = tf.TensorShape([1, 21])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-18.369339,
-10014.692,
17.730324,
17.730324,
17.730324,
-9984.974,
-18.322773,
-18.322773,
-18.322773,
-18.322773,
-18.322773,
-10007.267,
]
]
)
tf.debugging.assert_near(logits, expected_slice, atol=0.01)
@slow
def test_inference_question_answering_head_weak_supervision(self):
# note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")
tokenizer = self.default_tokenizer
# let's test on a batch
table, queries = prepare_tapas_batch_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="tf")
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = tf.TensorShape([2, 28])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[-160.375504, -160.375504, -160.375504, -10072.3965, -10070.9414, -10094.9736],
[-9861.6123, -9861.6123, -9861.6123, -9861.6123, -9891.01172, 146.600677],
]
)
tf.debugging.assert_near(logits[:, -6:], expected_slice, atol=0.4)
# test the aggregation logits
logits_aggregation = outputs.logits_aggregation
expected_shape = tf.TensorShape([2, 4])
tf.debugging.assert_equal(logits_aggregation.shape, expected_shape)
expected_tensor = tf.constant(
[[18.8545208, -9.76614857, -6.3128891, -2.93525243], [-4.05782509, 40.0351, -5.35329962, 23.3978653]]
)
tf.debugging.assert_near(logits_aggregation, expected_tensor, atol=0.001)
# test the predicted answer coordinates and aggregation indices
EXPECTED_PREDICTED_ANSWER_COORDINATES = [[(0, 0)], [(1, 2)]]
EXPECTED_PREDICTED_AGGREGATION_INDICES = [0, 1]
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
inputs, outputs.logits, outputs.logits_aggregation
)
tf.debugging.assert_equal(EXPECTED_PREDICTED_ANSWER_COORDINATES, predicted_answer_coordinates)
tf.debugging.assert_equal(EXPECTED_PREDICTED_AGGREGATION_INDICES, predicted_aggregation_indices)
@slow
def test_training_question_answering_head_weak_supervision(self):
# note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")
tokenizer = self.default_tokenizer
# let's test on a batch
table, queries, answer_coordinates, answer_text, float_answer = prepare_tapas_batch_inputs_for_training()
inputs = tokenizer(
table=table,
queries=queries,
answer_coordinates=answer_coordinates,
answer_text=answer_text,
padding="longest",
return_tensors="tf",
)
# the answer should be prepared by the user
float_answer = tf.constant(float_answer, dtype=tf.float32)
outputs = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
labels=inputs["labels"],
numeric_values=inputs["numeric_values"],
numeric_values_scale=inputs["numeric_values_scale"],
float_answer=float_answer,
)
# test the loss
loss = outputs.loss
expected_loss = tf.constant(3.3527612686157227e-08)
tf.debugging.assert_near(loss, expected_loss, atol=1e-6)
# test the logits on the first example
logits = outputs.logits
expected_shape = tf.TensorShape([2, 29])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
-160.0156,
-160.0156,
-160.0156,
-160.0156,
-160.0156,
-10072.2266,
-10070.8896,
-10092.6006,
-10092.6006,
]
)
tf.debugging.assert_near(logits[0, -9:], expected_slice, atol=1e-6)
# test the aggregation logits on the second example
logits_aggregation = outputs.logits_aggregation
expected_shape = tf.TensorShape([2, 4])
tf.debugging.assert_equal(logits_aggregation.shape, expected_shape)
expected_tensor = tf.constant([-4.0538, 40.0304, -5.3554, 23.3965])
tf.debugging.assert_near(logits_aggregation[1, -4:], expected_tensor, atol=1e-4)
@slow
def test_inference_question_answering_head_strong_supervision(self):
# note that google/tapas-base-finetuned-wikisql-supervised should correspond to tapas_wikisql_sqa_inter_masklm_base_reset
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wikisql-supervised")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = tf.TensorShape([1, 21])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-18.6185989,
-10008.7969,
17.6355762,
17.6355762,
17.6355762,
-10002.4404,
-18.7111301,
-18.7111301,
-18.7111301,
-18.7111301,
-18.7111301,
-10007.0977,
]
]
)
tf.debugging.assert_near(logits, expected_slice, atol=0.02)
# test the aggregation logits
logits_aggregation = outputs.logits_aggregation
expected_shape = tf.TensorShape([1, 4])
tf.debugging.assert_equal(logits_aggregation.shape, expected_shape)
expected_tensor = tf.constant([[16.5659733, -3.06624889, -2.34152961, -0.970244825]])
tf.debugging.assert_near(logits_aggregation, expected_tensor, atol=0.003)
@slow
def test_inference_classification_head(self):
# note that google/tapas-base-finetuned-tabfact should correspond to tapas_tabfact_inter_masklm_base_reset
model = TFTapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the classification logits
logits = outputs.logits
expected_shape = tf.TensorShape([1, 2])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant([[0.795137286, 9.5572]])
tf.debugging.assert_near(logits, expected_slice, atol=0.05)
# Below: tests for Tapas utilities which are defined in modeling_tf_tapas.py.
# These are based on segmented_tensor_test.py of the original implementation.
# URL: https://github.com/google-research/tapas/blob/master/tapas/models/segmented_tensor_test.py
@require_tensorflow_probability
class TFTapasUtilsTest(unittest.TestCase):
def _prepare_tables(self):
"""Prepares two tables, both with three distinct rows.
The first table has two columns:
1.0, 2.0 | 3.0
2.0, 0.0 | 1.0
1.0, 3.0 | 4.0
The second table has three columns:
1.0 | 2.0 | 3.0
2.0 | 0.0 | 1.0
1.0 | 3.0 | 4.0
Returns:
SegmentedTensors with the tables.
"""
values = tf.constant(
[
[[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
[[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
]
)
row_index = IndexMap(
indices=[
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
],
num_segments=3,
batch_dims=1,
)
col_index = IndexMap(
indices=[
[[0, 0, 1], [0, 0, 1], [0, 0, 1]],
[[0, 1, 2], [0, 1, 2], [0, 1, 2]],
],
num_segments=3,
batch_dims=1,
)
return values, row_index, col_index
def test_product_index(self):
_, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
row_index_proj = cell_index.project_outer(cell_index)
col_index_proj = cell_index.project_inner(cell_index)
ind = cell_index.indices
self.assertEqual(cell_index.num_segments, 9)
# Projections should give back the original indices.
# we use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(row_index.indices.numpy(), row_index_proj.indices.numpy())
self.assertEqual(row_index.num_segments, row_index_proj.num_segments)
self.assertEqual(row_index.batch_dims, row_index_proj.batch_dims)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(col_index.indices.numpy(), col_index_proj.indices.numpy())
self.assertEqual(col_index.batch_dims, col_index_proj.batch_dims)
# The first and second "column" are identified in the first table.
for i in range(3):
self.assertEqual(ind[0, i, 0], ind[0, i, 1])
self.assertNotEqual(ind[0, i, 0], ind[0, i, 2])
# All rows are distinct in the first table.
for i, i_2 in zip(range(3), range(3)):
for j, j_2 in zip(range(3), range(3)):
if i != i_2 and j != j_2:
self.assertNotEqual(ind[0, i, j], ind[0, i_2, j_2])
# All cells are distinct in the second table.
for i, i_2 in zip(range(3), range(3)):
for j, j_2 in zip(range(3), range(3)):
if i != i_2 or j != j_2:
self.assertNotEqual(ind[1, i, j], ind[1, i_2, j_2])
def test_flatten(self):
_, row_index, col_index = self._prepare_tables()
row_index_flat = flatten(row_index)
col_index_flat = flatten(col_index)
shape = [3, 4, 5]
batched_index = IndexMap(indices=tf.zeros(shape, dtype=tf.int32), num_segments=1, batch_dims=3)
batched_index_flat = flatten(batched_index)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(
row_index_flat.indices.numpy(), [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]
)
np.testing.assert_array_equal(
col_index_flat.indices.numpy(), [0, 0, 1, 0, 0, 1, 0, 0, 1, 3, 4, 5, 3, 4, 5, 3, 4, 5]
)
self.assertEqual(batched_index_flat.num_segments.numpy(), np.prod(shape))
np.testing.assert_array_equal(batched_index_flat.indices.numpy(), range(np.prod(shape)))
def test_range_index_map(self):
batch_shape = [3, 4]
num_segments = 5
index = range_index_map(batch_shape, num_segments)
self.assertEqual(num_segments, index.num_segments)
self.assertEqual(2, index.batch_dims)
indices = index.indices
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(list(indices.shape), [3, 4, 5])
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(indices[i, j, :].numpy(), range(num_segments))
def test_reduce_sum(self):
values, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
row_sum, _ = reduce_sum(values, row_index)
col_sum, _ = reduce_sum(values, col_index)
cell_sum, _ = reduce_sum(values, cell_index)
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
np.testing.assert_allclose(row_sum.numpy(), [[6.0, 3.0, 8.0], [6.0, 3.0, 8.0]])
np.testing.assert_allclose(col_sum.numpy(), [[9.0, 8.0, 0.0], [4.0, 5.0, 8.0]])
np.testing.assert_allclose(
cell_sum.numpy(),
[[3.0, 3.0, 0.0, 2.0, 1.0, 0.0, 4.0, 4.0, 0.0], [1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0]],
)
def test_reduce_mean(self):
values, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
row_mean, _ = reduce_mean(values, row_index)
col_mean, _ = reduce_mean(values, col_index)
cell_mean, _ = reduce_mean(values, cell_index)
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
np.testing.assert_allclose(
row_mean.numpy(), [[6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0], [6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0]]
)
np.testing.assert_allclose(col_mean.numpy(), [[9.0 / 6.0, 8.0 / 3.0, 0.0], [4.0 / 3.0, 5.0 / 3.0, 8.0 / 3.0]])
np.testing.assert_allclose(
cell_mean.numpy(),
[
[3.0 / 2.0, 3.0, 0.0, 2.0 / 2.0, 1.0, 0.0, 4.0 / 2.0, 4.0, 0.0],
[1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0],
],
)
def test_reduce_max(self):
values = tf.convert_to_tensor([2.0, 1.0, 0.0, 3.0])
index = IndexMap(indices=tf.convert_to_tensor([0, 1, 0, 1]), num_segments=2)
maximum, _ = reduce_max(values, index)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(maximum.numpy(), [2, 3])
def test_reduce_sum_vectorized(self):
values = tf.convert_to_tensor([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], [3.0, 4.0, 5.0]])
index = IndexMap(indices=tf.convert_to_tensor([0, 0, 1]), num_segments=2, batch_dims=0)
sums, new_index = reduce_sum(values, index)
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
np.testing.assert_allclose(sums.numpy(), [[3.0, 5.0, 7.0], [3.0, 4.0, 5.0]])
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(new_index.indices.numpy(), [0, 1])
np.testing.assert_array_equal(new_index.num_segments.numpy(), 2)
np.testing.assert_array_equal(new_index.batch_dims, 0)
def test_gather(self):
values, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
# Compute sums and then gather. The result should have the same shape as
# the original table and each element should contain the sum the values in
# its cell.
sums, _ = reduce_sum(values, cell_index)
cell_sum = gather(sums, cell_index)
assert cell_sum.shape == values.shape
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_allclose(
cell_sum.numpy(),
[[[3.0, 3.0, 3.0], [2.0, 2.0, 1.0], [4.0, 4.0, 4.0]], [[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]]],
)
def test_gather_vectorized(self):
values = tf.constant([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
index = IndexMap(indices=tf.convert_to_tensor([[0, 1], [1, 0]]), num_segments=2, batch_dims=1)
result = gather(values, index)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(result.numpy(), [[[1, 2], [3, 4]], [[7, 8], [5, 6]]])
...@@ -19,11 +19,13 @@ from transformers import ( ...@@ -19,11 +19,13 @@ from transformers import (
AutoModelForTableQuestionAnswering, AutoModelForTableQuestionAnswering,
AutoTokenizer, AutoTokenizer,
TableQuestionAnsweringPipeline, TableQuestionAnsweringPipeline,
TFAutoModelForTableQuestionAnswering,
pipeline, pipeline,
) )
from transformers.testing_utils import ( from transformers.testing_utils import (
is_pipeline_test, is_pipeline_test,
require_pandas, require_pandas,
require_tensorflow_probability,
require_tf, require_tf,
require_torch, require_torch,
require_torch_scatter, require_torch_scatter,
...@@ -33,6 +35,7 @@ from transformers.testing_utils import ( ...@@ -33,6 +35,7 @@ from transformers.testing_utils import (
from .test_pipelines_common import PipelineTestCaseMeta from .test_pipelines_common import PipelineTestCaseMeta
@require_tensorflow_probability
@require_torch_scatter @require_torch_scatter
@require_torch @require_torch
@require_pandas @require_pandas
...@@ -43,9 +46,105 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta): ...@@ -43,9 +46,105 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING model_mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
@require_tf @require_tf
@unittest.skip("Table question answering not implemented in TF")
def test_small_model_tf(self): def test_small_model_tf(self):
pass model_id = "lysandre/tiny-tapas-random-wtq"
model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id, from_pt=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
self.assertIsInstance(model.config.aggregation_labels, dict)
self.assertIsInstance(model.config.no_aggregation_label_index, int)
table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
outputs = table_querier(
table={
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["56", "45", "59"],
"number of movies": ["87", "53", "69"],
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
},
query="how many movies has george clooney played in?",
)
self.assertEqual(
outputs,
{"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
)
outputs = table_querier(
table={
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["56", "45", "59"],
"number of movies": ["87", "53", "69"],
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
},
query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
)
self.assertEqual(
outputs,
[
{"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
{"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
{"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
],
)
outputs = table_querier(
table={
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
},
query=[
"What repository has the largest number of stars?",
"Given that the numbers of stars defines if a repository is active, what repository is the most active?",
"What is the number of repositories?",
"What is the average number of stars?",
"What is the total amount of stars?",
],
)
self.assertEqual(
outputs,
[
{"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
{"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
{"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
{"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
{"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
],
)
with self.assertRaises(ValueError):
table_querier(query="What does it do with empty context ?", table=None)
with self.assertRaises(ValueError):
table_querier(query="What does it do with empty context ?", table="")
with self.assertRaises(ValueError):
table_querier(query="What does it do with empty context ?", table={})
with self.assertRaises(ValueError):
table_querier(
table={
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
}
)
with self.assertRaises(ValueError):
table_querier(
query="",
table={
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
},
)
with self.assertRaises(ValueError):
table_querier(
query=None,
table={
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
},
)
@require_torch @require_torch
def test_small_model_pt(self): def test_small_model_pt(self):
...@@ -148,7 +247,8 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta): ...@@ -148,7 +247,8 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
}, },
) )
def test_slow_tokenizer_sqa(self): @require_torch
def test_slow_tokenizer_sqa_pt(self):
model_id = "lysandre/tiny-tapas-random-sqa" model_id = "lysandre/tiny-tapas-random-sqa"
model = AutoModelForTableQuestionAnswering.from_pretrained(model_id) model = AutoModelForTableQuestionAnswering.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id)
...@@ -265,8 +365,126 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta): ...@@ -265,8 +365,126 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
}, },
) )
@require_tf
def test_slow_tokenizer_sqa_tf(self):
model_id = "lysandre/tiny-tapas-random-sqa"
model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id, from_pt=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
inputs = {
"table": {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["56", "45", "59"],
"number of movies": ["87", "53", "69"],
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
},
"query": ["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
}
sequential_outputs = table_querier(**inputs, sequential=True)
batch_outputs = table_querier(**inputs, sequential=False)
self.assertEqual(len(sequential_outputs), 3)
self.assertEqual(len(batch_outputs), 3)
self.assertEqual(sequential_outputs[0], batch_outputs[0])
self.assertNotEqual(sequential_outputs[1], batch_outputs[1])
# self.assertNotEqual(sequential_outputs[2], batch_outputs[2])
table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
outputs = table_querier(
table={
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["56", "45", "59"],
"number of movies": ["87", "53", "69"],
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
},
query="how many movies has george clooney played in?",
)
self.assertEqual(
outputs,
{"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
)
outputs = table_querier(
table={
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["56", "45", "59"],
"number of movies": ["87", "53", "69"],
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
},
query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
)
self.assertEqual(
outputs,
[
{"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
{"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
{"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
],
)
outputs = table_querier(
table={
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
},
query=[
"What repository has the largest number of stars?",
"Given that the numbers of stars defines if a repository is active, what repository is the most active?",
"What is the number of repositories?",
"What is the average number of stars?",
"What is the total amount of stars?",
],
)
self.assertEqual(
outputs,
[
{"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
{"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
{"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
{"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
{"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
],
)
with self.assertRaises(ValueError):
table_querier(query="What does it do with empty context ?", table=None)
with self.assertRaises(ValueError):
table_querier(query="What does it do with empty context ?", table="")
with self.assertRaises(ValueError):
table_querier(query="What does it do with empty context ?", table={})
with self.assertRaises(ValueError):
table_querier(
table={
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
}
)
with self.assertRaises(ValueError):
table_querier(
query="",
table={
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
},
)
with self.assertRaises(ValueError):
table_querier(
query=None,
table={
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
},
)
@slow @slow
def test_integration_wtq(self): def test_integration_wtq_pt(self):
table_querier = pipeline("table-question-answering") table_querier = pipeline("table-question-answering")
data = { data = {
...@@ -310,7 +528,54 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta): ...@@ -310,7 +528,54 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
self.assertListEqual(results, expected_results) self.assertListEqual(results, expected_results)
@slow @slow
def test_integration_sqa(self): def test_integration_wtq_tf(self):
model_id = "google/tapas-base-finetuned-wtq"
model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
table_querier = pipeline("table-question-answering", model=model, tokenizer=tokenizer)
data = {
"Repository": ["Transformers", "Datasets", "Tokenizers"],
"Stars": ["36542", "4512", "3934"],
"Contributors": ["651", "77", "34"],
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
}
queries = [
"What repository has the largest number of stars?",
"Given that the numbers of stars defines if a repository is active, what repository is the most active?",
"What is the number of repositories?",
"What is the average number of stars?",
"What is the total amount of stars?",
]
results = table_querier(data, queries)
expected_results = [
{"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
{"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
{
"answer": "COUNT > Transformers, Datasets, Tokenizers",
"coordinates": [(0, 0), (1, 0), (2, 0)],
"cells": ["Transformers", "Datasets", "Tokenizers"],
"aggregator": "COUNT",
},
{
"answer": "AVERAGE > 36542, 4512, 3934",
"coordinates": [(0, 1), (1, 1), (2, 1)],
"cells": ["36542", "4512", "3934"],
"aggregator": "AVERAGE",
},
{
"answer": "SUM > 36542, 4512, 3934",
"coordinates": [(0, 1), (1, 1), (2, 1)],
"cells": ["36542", "4512", "3934"],
"aggregator": "SUM",
},
]
self.assertListEqual(results, expected_results)
@slow
def test_integration_sqa_pt(self):
table_querier = pipeline( table_querier = pipeline(
"table-question-answering", "table-question-answering",
model="google/tapas-base-finetuned-sqa", model="google/tapas-base-finetuned-sqa",
...@@ -331,3 +596,29 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta): ...@@ -331,3 +596,29 @@ class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
{"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]}, {"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]},
] ]
self.assertListEqual(results, expected_results) self.assertListEqual(results, expected_results)
@slow
def test_integration_sqa_tf(self):
model_id = "google/tapas-base-finetuned-sqa"
model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
table_querier = pipeline(
"table-question-answering",
model=model,
tokenizer=tokenizer,
)
data = {
"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
"Age": ["56", "45", "59"],
"Number of movies": ["87", "53", "69"],
"Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
}
queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"]
results = table_querier(data, queries, sequential=True)
expected_results = [
{"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]},
{"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]},
{"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]},
]
self.assertListEqual(results, expected_results)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment