Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
c25f27fa
Unverified
Commit
c25f27fa
authored
Sep 07, 2022
by
NielsRogge
Committed by
GitHub
Sep 07, 2022
Browse files
[VideoMAE] Improve code examples (#18919)
* Simplify code example * Add seed
parent
0a632f07
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
16 deletions
+13
-16
src/transformers/models/videomae/modeling_videomae.py
src/transformers/models/videomae/modeling_videomae.py
+13
-16
No files found.
src/transformers/models/videomae/modeling_videomae.py
View file @
c25f27fa
...
@@ -598,21 +598,18 @@ class VideoMAEModel(VideoMAEPreTrainedModel):
...
@@ -598,21 +598,18 @@ class VideoMAEModel(VideoMAEPreTrainedModel):
>>> file_path = hf_hub_download(
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
... )
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> v
ideoreade
r = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> # sample 16 frames
>>> # sample 16 frames
>>> vr.seek(0)
>>> videoreader.seek(0)
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(vr))
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(videoreader))
>>> buffer = vr.get_batch(indices).asnumpy()
>>> video = videoreader.get_batch(indices).asnumpy()
>>> # create a list of NumPy arrays
>>> video = [buffer[i] for i in range(buffer.shape[0])]
>>> feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base")
>>> feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base")
>>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base")
>>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base")
>>> # prepare video for the model
>>> # prepare video for the model
>>> inputs = feature_extractor(video, return_tensors="pt")
>>> inputs = feature_extractor(
list(
video
)
, return_tensors="pt")
>>> # forward pass
>>> # forward pass
>>> outputs = model(**inputs)
>>> outputs = model(**inputs)
...
@@ -943,10 +940,13 @@ class VideoMAEForVideoClassification(VideoMAEPreTrainedModel):
...
@@ -943,10 +940,13 @@ class VideoMAEForVideoClassification(VideoMAEPreTrainedModel):
```python
```python
>>> from decord import VideoReader, cpu
>>> from decord import VideoReader, cpu
>>> import torch
>>> import torch
>>> import numpy as np
>>> from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification
>>> from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification
>>> from huggingface_hub import hf_hub_download
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... converted_len = int(clip_len * frame_sample_rate)
... converted_len = int(clip_len * frame_sample_rate)
...
@@ -961,20 +961,17 @@ class VideoMAEForVideoClassification(VideoMAEPreTrainedModel):
...
@@ -961,20 +961,17 @@ class VideoMAEForVideoClassification(VideoMAEPreTrainedModel):
>>> file_path = hf_hub_download(
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
... )
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> v
ideoreade
r = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> # sample 16 frames
>>> # sample 16 frames
>>> vr.seek(0)
>>> videoreader.seek(0)
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(vr))
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(videoreader))
>>> buffer = vr.get_batch(indices).asnumpy()
>>> video = videoreader.get_batch(indices).asnumpy()
>>> # create a list of NumPy arrays
>>> video = [buffer[i] for i in range(buffer.shape[0])]
>>> feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> inputs = feature_extractor(video, return_tensors="pt")
>>> inputs = feature_extractor(
list(
video
)
, return_tensors="pt")
>>> with torch.no_grad():
>>> with torch.no_grad():
... outputs = model(**inputs)
... outputs = model(**inputs)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment