"...training/git@developer.sourcefind.cn:dcuai/dlexamples.git" did not exist on "ac26d1fb3dd287ea88d5b5fe7ed629e9bb6cd875"
Unverified Commit c23cbdff authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Fix docstrings with last version of hf-doc-builder styler (#18581)

* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block
parent 42b8940b
...@@ -79,7 +79,6 @@ def separate_process_wrapper_fn(func: Callable[[], None], do_multi_processing: b ...@@ -79,7 +79,6 @@ def separate_process_wrapper_fn(func: Callable[[], None], do_multi_processing: b
measurements it is important that the function is executed in a separate process measurements it is important that the function is executed in a separate process
Args: Args:
- `func`: (`callable`): function() -> ... generic function which will be executed in its own separate process - `func`: (`callable`): function() -> ... generic function which will be executed in its own separate process
- `do_multi_processing`: (`bool`) Whether to run function on separate process or not - `do_multi_processing`: (`bool`) Whether to run function on separate process or not
""" """
...@@ -210,7 +209,6 @@ def measure_peak_memory_cpu(function: Callable[[], None], interval=0.5, device_i ...@@ -210,7 +209,6 @@ def measure_peak_memory_cpu(function: Callable[[], None], interval=0.5, device_i
https://github.com/pythonprofilers/memory_profiler/blob/895c4ac7a08020d66ae001e24067da6dcea42451/memory_profiler.py#L239 https://github.com/pythonprofilers/memory_profiler/blob/895c4ac7a08020d66ae001e24067da6dcea42451/memory_profiler.py#L239
Args: Args:
- `function`: (`callable`): function() -> ... function without any arguments to measure for which to measure - `function`: (`callable`): function() -> ... function without any arguments to measure for which to measure
the peak memory the peak memory
...@@ -228,7 +226,6 @@ def measure_peak_memory_cpu(function: Callable[[], None], interval=0.5, device_i ...@@ -228,7 +226,6 @@ def measure_peak_memory_cpu(function: Callable[[], None], interval=0.5, device_i
measures current cpu memory usage of a given `process_id` measures current cpu memory usage of a given `process_id`
Args: Args:
- `process_id`: (`int`) process_id for which to measure memory - `process_id`: (`int`) process_id for which to measure memory
Returns Returns
...@@ -336,7 +333,6 @@ def start_memory_tracing( ...@@ -336,7 +333,6 @@ def start_memory_tracing(
https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info
Args: Args:
- `modules_to_trace`: (None, string, list/tuple of string) if None, all events are recorded if string or list - `modules_to_trace`: (None, string, list/tuple of string) if None, all events are recorded if string or list
of strings: only events from the listed module/sub-module will be recorded (e.g. 'fairseq' or of strings: only events from the listed module/sub-module will be recorded (e.g. 'fairseq' or
'transformers.models.gpt2.modeling_gpt2') 'transformers.models.gpt2.modeling_gpt2')
...@@ -483,7 +479,6 @@ def stop_memory_tracing( ...@@ -483,7 +479,6 @@ def stop_memory_tracing(
Stop memory tracing cleanly and return a summary of the memory trace if a trace is given. Stop memory tracing cleanly and return a summary of the memory trace if a trace is given.
Args: Args:
`memory_trace` (optional output of start_memory_tracing, default: None): `memory_trace` (optional output of start_memory_tracing, default: None):
memory trace to convert in summary memory trace to convert in summary
`ignore_released_memory` (boolean, default: None): `ignore_released_memory` (boolean, default: None):
......
...@@ -208,7 +208,6 @@ class FlaxGenerationMixin: ...@@ -208,7 +208,6 @@ class FlaxGenerationMixin:
post](https://huggingface.co/blog/how-to-generate). post](https://huggingface.co/blog/how-to-generate).
Parameters: Parameters:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
max_length (`int`, *optional*, defaults to `model.config.max_length`): max_length (`int`, *optional*, defaults to `model.config.max_length`):
......
...@@ -418,7 +418,6 @@ class TFGenerationMixin: ...@@ -418,7 +418,6 @@ class TFGenerationMixin:
post](https://huggingface.co/blog/how-to-generate). post](https://huggingface.co/blog/how-to-generate).
Parameters: Parameters:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, `(batch_size, sequence_length, input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, `(batch_size, sequence_length,
feature_dim)` or `(batch_size, num_channels, height, width)`, *optional*): feature_dim)` or `(batch_size, num_channels, height, width)`, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
...@@ -1336,7 +1335,6 @@ class TFGenerationMixin: ...@@ -1336,7 +1335,6 @@ class TFGenerationMixin:
post](https://huggingface.co/blog/how-to-generate). post](https://huggingface.co/blog/how-to-generate).
Parameters: Parameters:
input_ids (`tf.Tensor` of `dtype=tf.int32` and shape `(batch_size, sequence_length)`, *optional*): input_ids (`tf.Tensor` of `dtype=tf.int32` and shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `None` the method initializes it with The sequence used as a prompt for the generation. If `None` the method initializes it with
`bos_token_id` and a batch size of 1. `bos_token_id` and a batch size of 1.
...@@ -2070,7 +2068,6 @@ class TFGenerationMixin: ...@@ -2070,7 +2068,6 @@ class TFGenerationMixin:
Generates sequences for models with a language modeling head using greedy decoding. Generates sequences for models with a language modeling head using greedy decoding.
Parameters: Parameters:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
logits_processor (`TFLogitsProcessorList`, *optional*): logits_processor (`TFLogitsProcessorList`, *optional*):
...@@ -2323,7 +2320,6 @@ class TFGenerationMixin: ...@@ -2323,7 +2320,6 @@ class TFGenerationMixin:
Generates sequences for models with a language modeling head using multinomial sampling. Generates sequences for models with a language modeling head using multinomial sampling.
Parameters: Parameters:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
logits_processor (`TFLogitsProcessorList`, *optional*): logits_processor (`TFLogitsProcessorList`, *optional*):
...@@ -2600,7 +2596,6 @@ class TFGenerationMixin: ...@@ -2600,7 +2596,6 @@ class TFGenerationMixin:
Generates sequences for models with a language modeling head using beam search with multinomial sampling. Generates sequences for models with a language modeling head using beam search with multinomial sampling.
Parameters: Parameters:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
max_length (`int`, *optional*, defaults to 20): max_length (`int`, *optional*, defaults to 20):
......
...@@ -1555,7 +1555,6 @@ class GenerationMixin: ...@@ -1555,7 +1555,6 @@ class GenerationMixin:
used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters: Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`, *optional*): logits_processor (`LogitsProcessorList`, *optional*):
...@@ -1789,7 +1788,6 @@ class GenerationMixin: ...@@ -1789,7 +1788,6 @@ class GenerationMixin:
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters: Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`, *optional*): logits_processor (`LogitsProcessorList`, *optional*):
...@@ -2046,7 +2044,6 @@ class GenerationMixin: ...@@ -2046,7 +2044,6 @@ class GenerationMixin:
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters: Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
beam_scorer (`BeamScorer`): beam_scorer (`BeamScorer`):
...@@ -2355,7 +2352,6 @@ class GenerationMixin: ...@@ -2355,7 +2352,6 @@ class GenerationMixin:
sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters: Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
beam_scorer (`BeamScorer`): beam_scorer (`BeamScorer`):
...@@ -2672,7 +2668,6 @@ class GenerationMixin: ...@@ -2672,7 +2668,6 @@ class GenerationMixin:
decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters: Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
beam_scorer (`BeamScorer`): beam_scorer (`BeamScorer`):
......
...@@ -80,8 +80,6 @@ class ModelCard: ...@@ -80,8 +80,6 @@ class ModelCard:
Inioluwa Deborah Raji and Timnit Gebru for the proposal behind model cards. Link: https://arxiv.org/abs/1810.03993 Inioluwa Deborah Raji and Timnit Gebru for the proposal behind model cards. Link: https://arxiv.org/abs/1810.03993
Note: A model card can be loaded and saved to disk. Note: A model card can be loaded and saved to disk.
Parameters:
""" """
def __init__(self, **kwargs): def __init__(self, **kwargs):
......
...@@ -563,7 +563,6 @@ class _LazyAutoMapping(OrderedDict): ...@@ -563,7 +563,6 @@ class _LazyAutoMapping(OrderedDict):
" A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed. " A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed.
Args: Args:
- config_mapping: The map model type to config class - config_mapping: The map model type to config class
- model_mapping: The map model type to model (or tokenizer) class - model_mapping: The map model type to model (or tokenizer) class
""" """
......
...@@ -130,7 +130,6 @@ class FlaubertTokenizer(XLMTokenizer): ...@@ -130,7 +130,6 @@ class FlaubertTokenizer(XLMTokenizer):
- Install with `pip install sacremoses` - Install with `pip install sacremoses`
Args: Args:
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
(bool). If True, we only apply BPE. (bool). If True, we only apply BPE.
......
...@@ -354,7 +354,6 @@ class FSMTTokenizer(PreTrainedTokenizer): ...@@ -354,7 +354,6 @@ class FSMTTokenizer(PreTrainedTokenizer):
- Install with `pip install sacremoses` - Install with `pip install sacremoses`
Args: Args:
- lang: ISO language code (default = 'en') (string). Languages should belong of the model supported - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported
languages. However, we don't enforce it. languages. However, we don't enforce it.
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
......
...@@ -1960,7 +1960,6 @@ def build_position_encoding( ...@@ -1960,7 +1960,6 @@ def build_position_encoding(
Builds the position encoding. Builds the position encoding.
Args: Args:
- out_channels: refers to the number of channels of the position encodings. - out_channels: refers to the number of channels of the position encodings.
- project_pos_dim: if specified, will project the position encodings to this dimension. - project_pos_dim: if specified, will project the position encodings to this dimension.
......
...@@ -1398,7 +1398,6 @@ class TapexTokenizer(PreTrainedTokenizer): ...@@ -1398,7 +1398,6 @@ class TapexTokenizer(PreTrainedTokenizer):
): ):
""" """
Args: Args:
table_content: table_content:
{"header": xxx, "rows": xxx, "id" (Optionally): xxx} {"header": xxx, "rows": xxx, "id" (Optionally): xxx}
......
...@@ -523,7 +523,6 @@ class TransfoXLPreTrainedModel(PreTrainedModel): ...@@ -523,7 +523,6 @@ class TransfoXLPreTrainedModel(PreTrainedModel):
weights embeddings afterwards if the model class has a *tie_weights()* method. weights embeddings afterwards if the model class has a *tie_weights()* method.
Arguments: Arguments:
new_num_tokens: (*optional*) int: new_num_tokens: (*optional*) int:
New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at
the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and
......
...@@ -791,7 +791,6 @@ class XLMTokenizer(PreTrainedTokenizer): ...@@ -791,7 +791,6 @@ class XLMTokenizer(PreTrainedTokenizer):
externally, and set `bypass_tokenizer=True` to bypass the tokenizer. externally, and set `bypass_tokenizer=True` to bypass the tokenizer.
Args: Args:
- lang: ISO language code (default = 'en') (string). Languages should belong of the model supported - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported
languages. However, we don't enforce it. languages. However, we don't enforce it.
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
......
...@@ -1286,7 +1286,6 @@ def pytest_terminal_summary_main(tr, id): ...@@ -1286,7 +1286,6 @@ def pytest_terminal_summary_main(tr, id):
there. there.
Args: Args:
- tr: `terminalreporter` passed from `conftest.py` - tr: `terminalreporter` passed from `conftest.py`
- id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is - id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is
needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other. needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other.
......
...@@ -377,7 +377,6 @@ class DistributedTensorGatherer: ...@@ -377,7 +377,6 @@ class DistributedTensorGatherer:
For some reason, that's not going to roll their boat. This class is there to solve that problem. For some reason, that's not going to roll their boat. This class is there to solve that problem.
Args: Args:
world_size (`int`): world_size (`int`):
The number of processes used in the distributed training. The number of processes used in the distributed training.
num_samples (`int`): num_samples (`int`):
......
...@@ -337,7 +337,6 @@ def speed_metrics(split, start_time, num_samples=None, num_steps=None): ...@@ -337,7 +337,6 @@ def speed_metrics(split, start_time, num_samples=None, num_steps=None):
should be run immediately after the operation to be measured has completed. should be run immediately after the operation to be measured has completed.
Args: Args:
- split: name to prefix metric (like train, eval, test...) - split: name to prefix metric (like train, eval, test...)
- start_time: operation start time - start_time: operation start time
- num_samples: number of samples processed - num_samples: number of samples processed
......
...@@ -120,7 +120,6 @@ class NotebookProgressBar: ...@@ -120,7 +120,6 @@ class NotebookProgressBar:
The main method to update the progress bar to `value`. The main method to update the progress bar to `value`.
Args: Args:
value (`int`): value (`int`):
The value to use. Must be between 0 and `total`. The value to use. Must be between 0 and `total`.
force_update (`bool`, *optional*, defaults to `False`): force_update (`bool`, *optional*, defaults to `False`):
...@@ -204,7 +203,6 @@ class NotebookTrainingTracker(NotebookProgressBar): ...@@ -204,7 +203,6 @@ class NotebookTrainingTracker(NotebookProgressBar):
An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics. An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics.
Args: Args:
num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*): num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*):
The list of column names for the metrics table (will be inferred from the first call to The list of column names for the metrics table (will be inferred from the first call to
[`~utils.notebook.NotebookTrainingTracker.write_line`] if not set). [`~utils.notebook.NotebookTrainingTracker.write_line`] if not set).
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment