Unverified Commit c15bb3fe authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

[Fix doc example] fix missing import jnp (#15291)



* fix missing import jnp

* Fix missing jax and k=1
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent eac4aecc
......@@ -1085,6 +1085,7 @@ class FlaxBartPreTrainedModel(FlaxPreTrainedModel):
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
......@@ -1353,6 +1354,7 @@ class FlaxBartForConditionalGeneration(FlaxBartPreTrainedModel):
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
......@@ -1525,6 +1527,7 @@ FLAX_BART_CONDITIONAL_GENERATION_DOCSTRING = """
Mask filling example:
```python
>>> import jax
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large")
......@@ -1536,7 +1539,7 @@ FLAX_BART_CONDITIONAL_GENERATION_DOCSTRING = """
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs)
>>> values, predictions = jax.lax.top_k(probs, k=1)
>>> tokenizer.decode(predictions).split()
```
......
......@@ -1048,6 +1048,7 @@ class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel):
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import BlenderbotTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
......@@ -1317,6 +1318,7 @@ class FlaxBlenderbotForConditionalGeneration(FlaxBlenderbotPreTrainedModel):
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import BlenderbotTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
......
......@@ -1060,6 +1060,7 @@ class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel):
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import BlenderbotSmallTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
......@@ -1329,6 +1330,7 @@ class FlaxBlenderbotSmallForConditionalGeneration(FlaxBlenderbotSmallPreTrainedM
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import BlenderbotSmallTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
......
......@@ -1051,6 +1051,7 @@ class FlaxMarianPreTrainedModel(FlaxPreTrainedModel):
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import MarianTokenizer, FlaxMarianMTModel
>>> tokenizer = MarianTokenizer.from_pretrained("facebook/marian-large-cnn")
......@@ -1319,6 +1320,7 @@ class FlaxMarianMTModel(FlaxMarianPreTrainedModel):
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import MarianTokenizer, FlaxMarianMTModel
>>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
......
......@@ -1058,6 +1058,7 @@ class FlaxPegasusPreTrainedModel(FlaxPreTrainedModel):
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import PegasusTokenizer, FlaxPegasusForConditionalGeneration
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
......@@ -1327,6 +1328,7 @@ class FlaxPegasusForConditionalGeneration(FlaxPegasusPreTrainedModel):
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import PegasusTokenizer, FlaxPegasusForConditionalGeneration
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
......
......@@ -2188,6 +2188,7 @@ class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedMode
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
......@@ -2455,6 +2456,7 @@ class Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(Flax{{coo
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
......@@ -2627,6 +2629,7 @@ FLAX_{{cookiecutter.uppercase_modelname}}_CONDITIONAL_GENERATION_DOCSTRING = """
Mask filling example:
```python
>>> import jax
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
......@@ -2638,7 +2641,7 @@ FLAX_{{cookiecutter.uppercase_modelname}}_CONDITIONAL_GENERATION_DOCSTRING = """
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs)
>>> values, predictions = jax.lax.top_k(probs, k=1)
>>> tokenizer.decode(predictions).split()
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment