"configs/datasets/subjective/vscode:/vscode.git/clone" did not exist on "2d4da8dd0210b1df2222c4fe251d8760087c9540"
Commit c0c20883 authored by Lysandre's avatar Lysandre Committed by Lysandre Debut
Browse files

ALBERT model

parent 8e5d84fc
from .configuration_utils import PretrainedConfig
class AlbertConfig(PretrainedConfig):
"""Configuration for `AlbertModel`.
The default settings match the configuration of model `albert_xxlarge`.
"""
def __init__(self,
vocab_size_or_config_json_file,
embedding_size=128,
hidden_size=4096,
num_hidden_layers=12,
num_hidden_groups=1,
num_attention_heads=64,
intermediate_size=16384,
inner_group_num=1,
down_scale_factor=1,
hidden_act="gelu",
hidden_dropout_prob=0,
attention_probs_dropout_prob=0,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12, **kwargs):
"""Constructs AlbertConfig.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `AlbertModel`.
embedding_size: size of voc embeddings.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_hidden_groups: Number of group for the hidden layers, parameters in
the same group are shared.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
inner_group_num: int, number of inner repetition of attention and ffn.
down_scale_factor: float, the scale to apply
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler.
hidden_dropout_prob: The dropout probability for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`AlbertModel`.
initializer_range: The stdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
super(AlbertConfig, self).__init__(**kwargs)
self.vocab_size = vocab_size_or_config_json_file
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_hidden_groups = num_hidden_groups
self.num_attention_heads = num_attention_heads
self.inner_group_num = inner_group_num
self.down_scale_factor = down_scale_factor
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
\ No newline at end of file
from transformers import AlbertConfig, BertForPreTraining, load_tf_weights_in_bert
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
# Initialise PyTorch model
config = BertConfig.from_json_file(bert_config_file)
print("Building PyTorch model from configuration: {}".format(str(config)))
model = BertForPreTraining(config)
# Load weights from tf checkpoint
load_tf_weights_in_bert(model, config, tf_checkpoint_path)
# Save pytorch-model
print("Save PyTorch model to {}".format(pytorch_dump_path))
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--tf_checkpoint_path",
default = None,
type = str,
required = True,
help = "Path to the TensorFlow checkpoint path.")
parser.add_argument("--albert_config_file",
default = None,
type = str,
required = True,
help = "The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.")
parser.add_argument("--pytorch_dump_path",
default = None,
type = str,
required = True,
help = "Path to the output PyTorch model.")
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path,
args.bert_config_file,
args.pytorch_dump_path)
import os
import math
import logging
import torch
import torch.nn as nn
from transformers.configuration_albert import AlbertConfig
logger = logging.getLogger(__name__)
def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
""" Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
print(model)
for name, array in zip(names, arrays):
og = name
name = name.replace("transformer/group_0/inner_group_0", "transformer")
name = name.replace("LayerNorm", "layer_norm")
name = name.replace("ffn_1", "ffn")
name = name.replace("ffn/intermediate/output", "ffn_output")
name = name.replace("attention_1", "attention")
name = name.replace("cls/predictions/transform", "predictions")
name = name.replace("transformer/layer_norm_1", "transformer/attention/output/LayerNorm")
name = name.split('/')
print(name)
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
l = re.split(r'_(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'kernel' or l[0] == 'gamma':
pointer = getattr(pointer, 'weight')
elif l[0] == 'output_bias' or l[0] == 'beta':
pointer = getattr(pointer, 'bias')
elif l[0] == 'output_weights':
pointer = getattr(pointer, 'weight')
elif l[0] == 'squad':
pointer = getattr(pointer, 'classifier')
else:
try:
pointer = getattr(pointer, l[0])
except AttributeError:
logger.info("Skipping {}".format("/".join(name)))
continue
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
if m_name[-11:] == '_embeddings':
pointer = getattr(pointer, 'weight')
elif m_name == 'kernel':
array = np.transpose(array)
print("transposed")
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {} from {}".format(name, og))
pointer.data = torch.from_numpy(array)
return model
class AlbertEmbeddings(nn.Module):
"""
Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(AlbertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
self.layer_norm = torch.nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
word_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = word_embeddings + position_embeddings + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def get_word_embeddings_table(self):
return self.word_embeddings
class AlbertModel(nn.Module):
def __init__(self, config):
super(AlbertModel, self).__init__()
self.config = config
self.embeddings = AlbertEmbeddings(config)
self.encoder = AlbertEncoder(config)
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
self.pooler_activation = nn.Tanh()
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
encoder_outputs = self.encoder(embedding_output,
extended_attention_mask,
head_mask=head_mask)
sequence_output = encoder_outputs[0]
print(sequence_output.shape, sequence_output[:, 0].shape, self.pooler(sequence_output[:, 0]).shape)
pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0]))
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here
return outputs
class AlbertForMaskedLM(nn.Module):
def __init__(self, config):
super(AlbertForMaskedLM, self).__init__()
self.config = config
self.bert = AlbertModel(config)
self.layer_norm = nn.LayerNorm(config.embedding_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
self.word_embeddings = nn.Linear(config.embedding_size, config.vocab_size)
def tie_weights(self):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self._tie_or_clone_weights(self.classifier.word_embeddings,
self.transformer.embeddings.word_embeddings)
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
hidden_states = self.bert(input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None)[0]
hidden_states = self.dense(hidden_states)
hidden_states = gelu_new(hidden_states)
hidden_states = self.layer_norm(hidden_states)
logits = self.word_embeddings(hidden_states)
return logits
class AlbertAttention(nn.Module):
def __init__(self, config):
super(AlbertAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_ids, attention_mask=None, head_mask=None):
mixed_query_layer = self.query(input_ids)
mixed_key_layer = self.key(input_ids)
mixed_value_layer = self.value(input_ids)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
reshaped_context_layer = context_layer.view(*new_context_layer_shape)
w = self.dense.weight.T.view(16, 64, 1024)
b = self.dense.bias
projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b
projected_context_layer = self.dropout(projected_context_layer)
layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer)
return layernormed_context_layer, projected_context_layer, reshaped_context_layer, context_layer, attention_scores, attention_probs, attention_mask
class AlbertTransformer(nn.Module):
def __init__(self, config):
super(AlbertTransformer, self).__init__()
self.config =config
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = AlbertAttention(config)
self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states, attention_mask=None, head_mask=None):
for i in range(self.config.num_hidden_layers):
attention_output = self.attention(hidden_states, attention_mask)[0]
ffn_output = self.ffn(attention_output)
ffn_output = gelu_new(ffn_output)
ffn_output = self.ffn_output(ffn_output)
hidden_states = self.layer_norm(ffn_output + attention_output)
return hidden_states
def gelu_new(x):
""" Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT).
Also see https://arxiv.org/abs/1606.08415
"""
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
class AlbertEncoder(nn.Module):
def __init__(self, config):
super(AlbertEncoder, self).__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
self.transformer = AlbertTransformer(config)
def forward(self, hidden_states, attention_mask=None, head_mask=None):
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
hidden_states = self.transformer(hidden_states, attention_mask, head_mask)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
# config = AlbertConfig.from_json_file("config.json")
# # model = AlbertForMaskedLM(config)
# model = AlbertModel(config)
# model = load_tf_weights_in_albert(model, config, "albert/albert")
# print(model)
# input_ids = torch.tensor([[31, 51, 99], [15, 5, 0]])
# input_mask = torch.tensor([[1, 1, 1], [1, 1, 0]])
# segment_ids = torch.tensor([[0, 0, 1], [0, 0, 0]])
# # sequence_output, pooled_outputs = model()
# logits = model(input_ids, attention_mask=input_mask, token_type_ids=segment_ids)[1]
# embeddings_output =
# print("pooled output", logits)
# # print("Pooled output", pooled_outputs)
config = AlbertConfig.from_json_file("/home/hf/google-research/albert/config.json")
model = AlbertModel(config)
model = load_tf_weights_in_albert(model, config, "/home/hf/transformers/albert/albert")
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment