Commit bf65d4db authored by VictorSanh's avatar VictorSanh
Browse files

Begin Updating the README.md

parent b54de837
# BERT
## Introduction
This is a PyTorch implementation of the [TensorFlow code](https://github.com/google-research/bert) released by Google AI with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805).
## Converting the TensorFlow pre-trained models to Pytorch
You can convert the pre-trained weights released by GoogleAI by calling the script `convert_tf_checkpoint_to_pytorch.py`.
It takes a TensorFlow checkpoint (`bert_model.ckpt`) containg the pre-trained weights and converts it to a `.bin` file readable for PyTorch.
TensorFlow pre-trained models can be found in the [original TensorFlow code](https://github.com/google-research/bert). We give an example with the `BERT-Base Uncased` model:
```shell
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
export BERT_PYTORCH_DIR=/path/to/pytorch/bert/uncased_L-12_H-768_A-12
python3.6 convert_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path=$BERT_BASE_DIR/bert_model.ckpt \
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
--pytorch_dump_path=$BERT_PYTORCH_DIR/pytorch_model.bin
```
## Fine-tuning with BERT: running the examples
We showcase the same examples as in the original implementation: fine-tuning on the MRPC classification corpus and the question answering dataset SQUAD.
Before running theses examples you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`. Please also download the `BERT-Base`
checkpoint, unzip it to some directory `$BERT_BASE_DIR`, and convert it to its PyTorch version as explained in the previous section.
This example code fine-tunes `BERT-Base` on the Microsoft Research Paraphrase
Corpus (MRPC) corpus and runs in less than 10 minutes on a single K-80.
```shell
export GLUE_DIR=/path/to/glue
python run_classifier_pytorch.py \
--task_name MRPC \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MRPC/ \
--vocab_file $BERT_BASE_DIR/vocab.txt \
--bert_config_file $BERT_BASE_DIR/bert_config.json \
--init_checkpoint $BERT_PYTORCH_DIR/pytorch_model.bin \
--max_seq_length 128 \
--train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/mrpc_output_pytorch/
```
## Introduction
**BERT**, or **B**idirectional **E**mbedding **R**epresentations from
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment