Unverified Commit bd9f4d79 authored by Raushan Turganbay's avatar Raushan Turganbay Committed by GitHub
Browse files

Add Video Llava (#29733)



* add model draft

* update docstring

* add tests

* support image and video as input

* update for better handling of mixed input and clean-up a bit

* bug when mixed inputs & add tests

* Update README.md
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Merge remote-tracking branch 'upstream/main' into video_llava

* link to abstract of paper in README

* fix test

* fix-copies

* make tests happy

* skip docstest for now

* do not run doctest for now

* Update src/transformers/models/video_llava/processing_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* address review comments

* failing tests

* Fix vocab_size in common tests for VLMs

* codestyle

* Update src/transformers/models/video_llava/configuration_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/configuration_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/modeling_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/modeling_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/video_llava.md
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/video_llava.md
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/video_llava.md
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/processing_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* PR suggestions

* fix-copies

* Update src/transformers/models/video_llava/configuration_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/configuration_video_llava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add full example in docs

* clean-up with new model-id

* [run-slow] video_llava

* update docstring

* [run-slow] video_llava

* remove all achive maps

* fix some tests

* test was supposed to be skipped for llava :)

---------
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
parent b8aee2e9
......@@ -8410,6 +8410,34 @@ class UperNetPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
class VideoLlavaForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VideoLlavaImageProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VideoLlavaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VideoLlavaProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VideoMAEForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
......
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from parameterized import parameterized
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VideoLlavaImageProcessor
class VideoLlavaImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=5,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=80,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_normalize=True,
image_mean=OPENAI_CLIP_MEAN,
image_std=OPENAI_CLIP_STD,
do_convert_rgb=True,
):
size = size if size is not None else {"shortest_edge": 20}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTester.expected_output_image_shape
def expected_output_image_shape(self, images):
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTester.prepare_image_inputs
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
def prepare_video_inputs(self, equal_resolution=False, torchify=False):
numpify = not torchify
images = prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
# let's simply copy the frames to fake a long video-clip
videos = []
for image in images:
if numpify:
video = image[None, ...].repeat(8, 0)
else:
video = image[None, ...].repeat(8, 1, 1, 1)
videos.append(video)
return videos
@require_torch
@require_vision
class VideoLlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = VideoLlavaImageProcessor if is_vision_available() else None
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.setUp with CLIP->VideoLlava
def setUp(self):
self.image_processor_tester = VideoLlavaImageProcessingTester(self)
@property
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.image_processor_dict
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.test_image_processor_from_dict_with_kwargs
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 20})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
def test_call_pil(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values_images
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values_images
expected_output_image_shape = (5, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_numpy(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(images=image_inputs[0], return_tensors="pt").pixel_values_images
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(images=image_inputs, return_tensors="pt").pixel_values_images
expected_output_image_shape = (5, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_numpy_videos(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=True)
for video in video_inputs:
self.assertIsInstance(video, np.ndarray)
# Test not batched input
encoded_videos = image_processing(images=None, videos=video_inputs[0], return_tensors="pt").pixel_values_videos
expected_output_video_shape = (1, 8, 3, 18, 18)
self.assertEqual(tuple(encoded_videos.shape), expected_output_video_shape)
# Test batched
encoded_videos = image_processing(images=None, videos=video_inputs, return_tensors="pt").pixel_values_videos
expected_output_video_shape = (5, 8, 3, 18, 18)
self.assertEqual(tuple(encoded_videos.shape), expected_output_video_shape)
def test_call_pytorch(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values_images
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values_images
expected_output_image_shape = (5, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_pytorch_videos(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=True, torchify=True)
for video in video_inputs:
self.assertIsInstance(video, torch.Tensor)
# Test not batched input
encoded_videos = image_processing(images=None, videos=video_inputs[0], return_tensors="pt").pixel_values_videos
expected_output_video_shape = (1, 8, 3, 18, 18)
self.assertEqual(tuple(encoded_videos.shape), expected_output_video_shape)
# Test batched
encoded_videos = image_processing(images=None, videos=video_inputs, return_tensors="pt").pixel_values_videos
expected_output_video_shape = (5, 8, 3, 18, 18)
self.assertEqual(tuple(encoded_videos.shape), expected_output_video_shape)
@parameterized.expand([(True, False), (False, True)])
def test_call_mixed(self, numpify, torchify):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(
equal_resolution=True, numpify=numpify, torchify=torchify
)
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=True, torchify=torchify)
# Test not batched input
encoded = image_processing(images=image_inputs[0], videos=video_inputs[0], return_tensors="pt")
expected_output_video_shape = (1, 8, 3, 18, 18)
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded.pixel_values_videos.shape), expected_output_video_shape)
self.assertEqual(tuple(encoded.pixel_values_images.shape), expected_output_image_shape)
# Test batched
encoded = image_processing(images=image_inputs, videos=video_inputs, return_tensors="pt")
expected_output_video_shape = (5, 8, 3, 18, 18)
expected_output_image_shape = (5, 3, 18, 18)
self.assertEqual(tuple(encoded.pixel_values_videos.shape), expected_output_video_shape)
self.assertEqual(tuple(encoded.pixel_values_images.shape), expected_output_image_shape)
def test_call_numpy_4_channels(self):
# Test that can process images which have an arbitrary number of channels
# Initialize image_processing
image_processor = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
self.image_processor_tester.num_channels = 4
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
# Test not batched input
encoded_images = image_processor(
image_inputs[0],
return_tensors="pt",
input_data_format="channels_first",
image_mean=0,
image_std=1,
).pixel_values_images
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processor(
image_inputs,
return_tensors="pt",
input_data_format="channels_first",
image_mean=0,
image_std=1,
).pixel_values_images
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
This diff is collapsed.
......@@ -3946,7 +3946,7 @@ class ModelTesterMixin:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
if config.model_type in ["llava", "llava_next", "vipllava"]:
if config.model_type in ["llava", "llava_next", "vipllava", "video_llava"]:
self.skipTest("Llava-like models currently (transformers==4.39.1) requires an attention_mask input")
if config.model_type in ["paligemma"]:
self.skipTest(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment