Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
bd404735
"w!" did not exist on "fa84ae26d62c7ac2ad6dca18b2d8b12ab83bc900"
Commit
bd404735
authored
Jul 12, 2019
by
thomwolf
Browse files
embeddings resizing + tie_weights
parent
50e62a4c
Changes
15
Show whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
196 additions
and
332 deletions
+196
-332
pytorch_transformers/modeling_bert.py
pytorch_transformers/modeling_bert.py
+37
-16
pytorch_transformers/modeling_gpt2.py
pytorch_transformers/modeling_gpt2.py
+26
-122
pytorch_transformers/modeling_openai.py
pytorch_transformers/modeling_openai.py
+30
-120
pytorch_transformers/modeling_transfo_xl.py
pytorch_transformers/modeling_transfo_xl.py
+7
-0
pytorch_transformers/modeling_utils.py
pytorch_transformers/modeling_utils.py
+39
-2
pytorch_transformers/modeling_xlm.py
pytorch_transformers/modeling_xlm.py
+6
-7
pytorch_transformers/modeling_xlnet.py
pytorch_transformers/modeling_xlnet.py
+8
-4
pytorch_transformers/tests/modeling_bert_test.py
pytorch_transformers/tests/modeling_bert_test.py
+1
-1
pytorch_transformers/tests/modeling_common_test.py
pytorch_transformers/tests/modeling_common_test.py
+37
-8
pytorch_transformers/tests/modeling_gpt2_test.py
pytorch_transformers/tests/modeling_gpt2_test.py
+1
-1
pytorch_transformers/tests/modeling_openai_test.py
pytorch_transformers/tests/modeling_openai_test.py
+1
-1
pytorch_transformers/tests/modeling_transfo_xl_test.py
pytorch_transformers/tests/modeling_transfo_xl_test.py
+1
-1
pytorch_transformers/tests/modeling_utils_test.py
pytorch_transformers/tests/modeling_utils_test.py
+0
-47
pytorch_transformers/tests/modeling_xlm_test.py
pytorch_transformers/tests/modeling_xlm_test.py
+1
-1
pytorch_transformers/tests/modeling_xlnet_test.py
pytorch_transformers/tests/modeling_xlnet_test.py
+1
-1
No files found.
pytorch_transformers/modeling_bert.py
View file @
bd404735
...
...
@@ -507,23 +507,17 @@ class BertPredictionHeadTransform(nn.Module):
class
BertLMPredictionHead
(
nn
.
Module
):
def
__init__
(
self
,
config
,
bert_model_embedding_weights
):
def
__init__
(
self
,
config
):
super
(
BertLMPredictionHead
,
self
).
__init__
()
self
.
transform
=
BertPredictionHeadTransform
(
config
)
self
.
torchscript
=
config
.
torchscript
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self
.
decoder
=
nn
.
Linear
(
bert_model_embedding_weights
.
size
(
1
)
,
bert_model_embedding_weights
.
size
(
0
)
,
self
.
decoder
=
nn
.
Linear
(
config
.
hidden_
size
,
config
.
vocab_
size
,
bias
=
False
)
if
self
.
torchscript
:
self
.
decoder
.
weight
=
nn
.
Parameter
(
bert_model_embedding_weights
.
clone
())
else
:
self
.
decoder
.
weight
=
bert_model_embedding_weights
self
.
bias
=
nn
.
Parameter
(
torch
.
zeros
(
bert_model_embedding_weights
.
size
(
0
)))
self
.
bias
=
nn
.
Parameter
(
torch
.
zeros
(
config
.
vocab_size
))
def
forward
(
self
,
hidden_states
):
hidden_states
=
self
.
transform
(
hidden_states
)
...
...
@@ -532,9 +526,9 @@ class BertLMPredictionHead(nn.Module):
class
BertOnlyMLMHead
(
nn
.
Module
):
def
__init__
(
self
,
config
,
bert_model_embedding_weights
):
def
__init__
(
self
,
config
):
super
(
BertOnlyMLMHead
,
self
).
__init__
()
self
.
predictions
=
BertLMPredictionHead
(
config
,
bert_model_embedding_weights
)
self
.
predictions
=
BertLMPredictionHead
(
config
)
def
forward
(
self
,
sequence_output
):
prediction_scores
=
self
.
predictions
(
sequence_output
)
...
...
@@ -552,9 +546,9 @@ class BertOnlyNSPHead(nn.Module):
class
BertPreTrainingHeads
(
nn
.
Module
):
def
__init__
(
self
,
config
,
bert_model_embedding_weights
):
def
__init__
(
self
,
config
):
super
(
BertPreTrainingHeads
,
self
).
__init__
()
self
.
predictions
=
BertLMPredictionHead
(
config
,
bert_model_embedding_weights
)
self
.
predictions
=
BertLMPredictionHead
(
config
)
self
.
seq_relationship
=
nn
.
Linear
(
config
.
hidden_size
,
2
)
def
forward
(
self
,
sequence_output
,
pooled_output
):
...
...
@@ -619,6 +613,11 @@ class BertModel(BertPreTrainedModel):
self
.
apply
(
self
.
init_weights
)
def
_resize_token_embeddings
(
self
,
new_num_tokens
):
old_embeddings
=
self
.
embeddings
.
word_embeddings
new_embeddings
=
self
.
_get_resized_embeddings
(
old_embeddings
,
new_num_tokens
)
self
.
embeddings
.
word_embeddings
=
new_embeddings
def
_prune_heads
(
self
,
heads_to_prune
):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
...
...
@@ -750,9 +749,20 @@ class BertForPreTraining(BertPreTrainedModel):
super
(
BertForPreTraining
,
self
).
__init__
(
config
)
self
.
bert
=
BertModel
(
config
)
self
.
cls
=
BertPreTrainingHeads
(
config
,
self
.
bert
.
embeddings
.
word_embeddings
.
weight
)
self
.
cls
=
BertPreTrainingHeads
(
config
)
self
.
apply
(
self
.
init_weights
)
self
.
tie_weights
()
def
tie_weights
(
self
):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
input_embeddings
=
self
.
bert
.
embeddings
.
word_embeddings
.
weight
if
self
.
config
.
torchscript
:
self
.
cls
.
predictions
.
decoder
.
weight
=
nn
.
Parameter
(
input_embeddings
.
clone
())
else
:
self
.
cls
.
predictions
.
decoder
.
weight
=
input_embeddings
# Tied weights
def
forward
(
self
,
input_ids
,
token_type_ids
=
None
,
attention_mask
=
None
,
masked_lm_labels
=
None
,
next_sentence_label
=
None
,
head_mask
=
None
):
...
...
@@ -845,9 +855,20 @@ class BertForMaskedLM(BertPreTrainedModel):
super
(
BertForMaskedLM
,
self
).
__init__
(
config
)
self
.
bert
=
BertModel
(
config
)
self
.
cls
=
BertOnlyMLMHead
(
config
,
self
.
bert
.
embeddings
.
word_embeddings
.
weight
)
self
.
cls
=
BertOnlyMLMHead
(
config
)
self
.
apply
(
self
.
init_weights
)
self
.
tie_weights
()
def
tie_weights
(
self
):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
input_embeddings
=
self
.
bert
.
embeddings
.
word_embeddings
.
weight
if
self
.
config
.
torchscript
:
self
.
cls
.
predictions
.
decoder
.
weight
=
nn
.
Parameter
(
input_embeddings
.
clone
())
else
:
self
.
cls
.
predictions
.
decoder
.
weight
=
input_embeddings
# Tied weights
def
forward
(
self
,
input_ids
,
token_type_ids
=
None
,
attention_mask
=
None
,
masked_lm_labels
=
None
,
head_mask
=
None
):
"""
...
...
pytorch_transformers/modeling_gpt2.py
View file @
bd404735
...
...
@@ -104,7 +104,6 @@ class GPT2Config(PretrainedConfig):
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
n_embd: Dimensionality of the embeddings and hidden states.
...
...
@@ -119,14 +118,12 @@ class GPT2Config(PretrainedConfig):
embd_pdrop: The dropout ratio for the embeddings.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
predict_special_tokens: should we predict special tokens (when the model has a LM head)
"""
pretrained_config_archive_map
=
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
def
__init__
(
self
,
vocab_size_or_config_json_file
=
50257
,
n_special
=
0
,
n_positions
=
1024
,
n_ctx
=
1024
,
n_embd
=
768
,
...
...
@@ -137,7 +134,6 @@ class GPT2Config(PretrainedConfig):
attn_pdrop
=
0.1
,
layer_norm_epsilon
=
1e-5
,
initializer_range
=
0.02
,
predict_special_tokens
=
True
,
num_labels
=
1
,
summary_type
=
'token_ids'
,
...
...
@@ -151,7 +147,6 @@ class GPT2Config(PretrainedConfig):
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
n_embd: Dimensionality of the embeddings and hidden states.
...
...
@@ -166,7 +161,6 @@ class GPT2Config(PretrainedConfig):
embd_pdrop: The dropout ratio for the embeddings.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
predict_special_tokens: should we predict special tokens (when the model has a LM head)
"""
super
(
GPT2Config
,
self
).
__init__
(
**
kwargs
)
...
...
@@ -178,7 +172,6 @@ class GPT2Config(PretrainedConfig):
self
.
__dict__
[
key
]
=
value
elif
isinstance
(
vocab_size_or_config_json_file
,
int
):
self
.
vocab_size
=
vocab_size_or_config_json_file
self
.
n_special
=
n_special
self
.
n_ctx
=
n_ctx
self
.
n_positions
=
n_positions
self
.
n_embd
=
n_embd
...
...
@@ -189,7 +182,6 @@ class GPT2Config(PretrainedConfig):
self
.
attn_pdrop
=
attn_pdrop
self
.
layer_norm_epsilon
=
layer_norm_epsilon
self
.
initializer_range
=
initializer_range
self
.
predict_special_tokens
=
predict_special_tokens
self
.
num_labels
=
num_labels
self
.
summary_type
=
summary_type
...
...
@@ -203,10 +195,6 @@ class GPT2Config(PretrainedConfig):
"or the path to a pretrained model config file (str)"
)
@
property
def
total_tokens_embeddings
(
self
):
return
self
.
vocab_size
+
self
.
n_special
@
property
def
hidden_size
(
self
):
return
self
.
n_embd
...
...
@@ -347,34 +335,6 @@ class Block(nn.Module):
return
outputs
# x, present, (attentions)
class
GPT2LMHead
(
nn
.
Module
):
""" Language Model Head for the transformer """
def
__init__
(
self
,
model_embeddings_weights
,
config
):
super
(
GPT2LMHead
,
self
).
__init__
()
self
.
n_embd
=
config
.
n_embd
self
.
vocab_size
=
config
.
vocab_size
self
.
predict_special_tokens
=
config
.
predict_special_tokens
self
.
torchscript
=
config
.
torchscript
embed_shape
=
model_embeddings_weights
.
shape
self
.
decoder
=
nn
.
Linear
(
embed_shape
[
1
],
embed_shape
[
0
],
bias
=
False
)
self
.
set_embeddings_weights
(
model_embeddings_weights
)
def
set_embeddings_weights
(
self
,
model_embeddings_weights
,
predict_special_tokens
=
True
):
self
.
predict_special_tokens
=
predict_special_tokens
# Export to TorchScript can't handle parameter sharing so we are cloning them.
if
self
.
torchscript
:
self
.
decoder
.
weight
=
nn
.
Parameter
(
model_embeddings_weights
.
clone
())
else
:
self
.
decoder
.
weight
=
model_embeddings_weights
# Tied weights
def
forward
(
self
,
hidden_state
):
lm_logits
=
self
.
decoder
(
hidden_state
)
if
not
self
.
predict_special_tokens
:
lm_logits
=
lm_logits
[...,
:
self
.
vocab_size
]
return
lm_logits
class
GPT2PreTrainedModel
(
PreTrainedModel
):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
...
...
@@ -400,36 +360,6 @@ class GPT2PreTrainedModel(PreTrainedModel):
module
.
bias
.
data
.
zero_
()
module
.
weight
.
data
.
fill_
(
1.0
)
@
classmethod
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
*
inputs
,
**
kwargs
):
"""
Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `gpt2`
- a path or url to a pretrained model archive containing:
. `gpt2_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
- a path or url to a pretrained model archive containing:
. `gpt2_config.json` a configuration file for the model
. a TensorFlow checkpoint with trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific GPT2 class
"""
num_special_tokens
=
kwargs
.
pop
(
'num_special_tokens'
,
None
)
model
=
super
().
from_pretrained
(
pretrained_model_name_or_path
,
*
inputs
,
**
kwargs
)
# Add additional embeddings for special tokens if needed
# This step also make sure we are still sharing the output and input embeddings after loading weights
model
.
set_num_special_tokens
(
num_special_tokens
)
return
model
class
GPT2Model
(
GPT2PreTrainedModel
):
"""OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").
...
...
@@ -447,13 +377,13 @@ class GPT2Model(GPT2PreTrainedModel):
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size +
config.
n_special - 1] ______________________
config.vocab_size + n_special - 1] ______________________
where total_tokens_embeddings
can be obtained as config.total_tokens_embeddings and
is equal to
where total_tokens_embeddings is equal to
::
total_tokens_embeddings =
config.
vocab_size +
config.
n_special
total_tokens_embeddings = vocab_size + n_special
You should use the associated indices to index the embeddings.
...
...
@@ -474,7 +404,7 @@ class GPT2Model(GPT2PreTrainedModel):
self
.
output_hidden_states
=
config
.
output_hidden_states
self
.
output_attentions
=
config
.
output_attentions
self
.
wte
=
nn
.
Embedding
(
config
.
total_tokens_embeddings
,
config
.
n_embd
)
self
.
wte
=
nn
.
Embedding
(
config
.
vocab_size
,
config
.
n_embd
)
self
.
wpe
=
nn
.
Embedding
(
config
.
n_positions
,
config
.
n_embd
)
self
.
drop
=
nn
.
Dropout
(
config
.
embd_pdrop
)
self
.
h
=
nn
.
ModuleList
([
Block
(
config
.
n_ctx
,
config
,
scale
=
True
)
for
_
in
range
(
config
.
n_layer
)])
...
...
@@ -482,26 +412,8 @@ class GPT2Model(GPT2PreTrainedModel):
self
.
apply
(
self
.
init_weights
)
def
set_num_special_tokens
(
self
,
num_special_tokens
=
None
):
"""
Update input embeddings with new embedding matrix if needed.
Args:
num_special_tokens: Special tokens to be added to the embedding matrix
TODO Lysandre filled args
"""
if
num_special_tokens
is
None
or
self
.
config
.
n_special
==
num_special_tokens
:
return
# Update config
self
.
config
.
n_special
=
num_special_tokens
# Build new embeddings and initialize all new embeddings (in particular the special tokens)
old_embed
=
self
.
wte
self
.
wte
=
nn
.
Embedding
(
self
.
config
.
total_tokens_embeddings
,
self
.
config
.
n_embd
)
self
.
wte
.
to
(
old_embed
.
weight
.
device
)
self
.
init_weights
(
self
.
wte
)
# Copy word embeddings from the previous weights
self
.
wte
.
weight
.
data
[:
self
.
config
.
vocab_size
,
:]
=
old_embed
.
weight
.
data
[:
self
.
config
.
vocab_size
,
:]
def
_resize_token_embeddings
(
self
,
new_num_tokens
):
self
.
wte
=
self
.
_get_resized_embeddings
(
self
.
wte
,
new_num_tokens
)
def
_prune_heads
(
self
,
heads_to_prune
):
""" Prunes heads of the model.
...
...
@@ -641,23 +553,20 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
def
__init__
(
self
,
config
):
super
(
GPT2LMHeadModel
,
self
).
__init__
(
config
)
self
.
transformer
=
GPT2Model
(
config
)
self
.
lm_head
=
GPT2LMHead
(
self
.
transformer
.
wte
.
weight
,
config
)
self
.
apply
(
self
.
init_weights
)
self
.
lm_head
=
nn
.
Linear
(
config
.
n_embd
,
config
.
vocab_size
,
bias
=
False
)
def
set_num_special_tokens
(
self
,
num_special_tokens
,
predict_special_tokens
=
True
):
"""
Update input and output embeddings with new embedding matrix. Make sure we are sharing the embeddings.
Args:
num_special_tokens: Special tokens to be added to the embedding matrix
predict_special_tokens: if set to True, the model will try and predict the specified ``num_special_tokens``.
Defaults to True.
self
.
apply
(
self
.
init_weights
)
self
.
tie_weights
()
TODO Lysandre filled args
def
tie_weights
(
self
):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self
.
config
.
predict_special_tokens
=
self
.
transformer
.
config
.
predict_special_tokens
=
predict_special_tokens
self
.
transformer
.
set_num_special_tokens
(
num_special_tokens
)
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
wte
.
weight
,
predict_special_tokens
=
predict_special_tokens
)
input_embeddings
=
self
.
transformer
.
wte
.
weight
if
self
.
config
.
torchscript
:
self
.
lm_head
.
weight
=
nn
.
Parameter
(
input_embeddings
.
clone
())
else
:
self
.
lm_head
.
weight
=
input_embeddings
# Tied weights
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
lm_labels
=
None
,
past
=
None
,
head_mask
=
None
):
"""
...
...
@@ -740,25 +649,20 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
def
__init__
(
self
,
config
):
super
(
GPT2DoubleHeadsModel
,
self
).
__init__
(
config
)
self
.
transformer
=
GPT2Model
(
config
)
self
.
lm_head
=
GPT2LMHead
(
self
.
transformer
.
wte
.
weight
,
config
)
self
.
lm_head
=
nn
.
Linear
(
config
.
n_embd
,
config
.
vocab_size
,
bias
=
False
)
self
.
multiple_choice_head
=
SequenceSummary
(
config
)
self
.
apply
(
self
.
init_weights
)
def
set_num_special_tokens
(
self
,
num_special_tokens
,
predict_special_tokens
=
True
):
def
tie_weights
(
self
):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
Update input and output embeddings with new embedding matrix.Make sure we are sharing the embeddings
Args:
num_special_tokens: Special tokens to be added to the embedding matrix
predict_special_tokens: if set to True, the model will try and predict the specified ``num_special_tokens``.
Defaults to True.
TODO Lysandre filled args
"""
self
.
config
.
predict_special_tokens
=
self
.
transformer
.
config
.
predict_special_tokens
=
predict_special_tokens
self
.
transformer
.
set_num_special_tokens
(
num_special_tokens
)
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
wte
.
weight
,
predict_special_tokens
=
predict_special_tokens
)
input_embeddings
=
self
.
transformer
.
wte
.
weight
if
self
.
config
.
torchscript
:
self
.
lm_head
.
weight
=
nn
.
Parameter
(
input_embeddings
.
clone
())
else
:
self
.
lm_head
.
weight
=
input_embeddings
# Tied weights
def
forward
(
self
,
input_ids
,
mc_token_ids
=
None
,
lm_labels
=
None
,
mc_labels
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
past
=
None
,
head_mask
=
None
):
...
...
pytorch_transformers/modeling_openai.py
View file @
bd404735
...
...
@@ -156,7 +156,6 @@ class OpenAIGPTConfig(PretrainedConfig):
def
__init__
(
self
,
vocab_size_or_config_json_file
=
40478
,
n_special
=
0
,
n_positions
=
512
,
n_ctx
=
512
,
n_embd
=
768
,
...
...
@@ -190,7 +189,6 @@ class OpenAIGPTConfig(PretrainedConfig):
self
.
__dict__
[
key
]
=
value
elif
isinstance
(
vocab_size_or_config_json_file
,
int
):
self
.
vocab_size
=
vocab_size_or_config_json_file
self
.
n_special
=
n_special
self
.
n_ctx
=
n_ctx
self
.
n_positions
=
n_positions
self
.
n_embd
=
n_embd
...
...
@@ -216,10 +214,6 @@ class OpenAIGPTConfig(PretrainedConfig):
"or the path to a pretrained model config file (str)"
)
@
property
def
total_tokens_embeddings
(
self
):
return
self
.
vocab_size
+
self
.
n_special
@
property
def
hidden_size
(
self
):
return
self
.
n_embd
...
...
@@ -355,34 +349,6 @@ class Block(nn.Module):
return
outputs
class
OpenAIGPTLMHead
(
nn
.
Module
):
""" Language Model Head for the transformer """
def
__init__
(
self
,
model_embeddings_weights
,
config
):
super
(
OpenAIGPTLMHead
,
self
).
__init__
()
self
.
n_embd
=
config
.
n_embd
self
.
vocab_size
=
config
.
vocab_size
self
.
predict_special_tokens
=
config
.
predict_special_tokens
self
.
torchscript
=
config
.
torchscript
embed_shape
=
model_embeddings_weights
.
shape
self
.
decoder
=
nn
.
Linear
(
embed_shape
[
1
],
embed_shape
[
0
],
bias
=
False
)
self
.
set_embeddings_weights
(
model_embeddings_weights
)
def
set_embeddings_weights
(
self
,
model_embeddings_weights
,
predict_special_tokens
=
True
):
self
.
predict_special_tokens
=
predict_special_tokens
if
self
.
torchscript
:
self
.
decoder
.
weight
=
nn
.
Parameter
(
model_embeddings_weights
.
clone
())
else
:
self
.
decoder
.
weight
=
model_embeddings_weights
# Tied weights
def
forward
(
self
,
hidden_state
):
lm_logits
=
self
.
decoder
(
hidden_state
)
if
not
self
.
predict_special_tokens
:
lm_logits
=
lm_logits
[...,
:
self
.
vocab_size
]
return
lm_logits
class
OpenAIGPTPreTrainedModel
(
PreTrainedModel
):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
...
...
@@ -408,36 +374,6 @@ class OpenAIGPTPreTrainedModel(PreTrainedModel):
module
.
bias
.
data
.
zero_
()
module
.
weight
.
data
.
fill_
(
1.0
)
@
classmethod
def
from_pretrained
(
cls
,
pretrained_model_name_or_path
,
*
inputs
,
**
kwargs
):
"""
Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
- a path or url to a pretrained model archive containing:
. `config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
- a path or url to a pretrained model archive containing:
. `config.json` a configuration file for the model
. a series of NumPy files containing OpenAI TensorFlow trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific OpenAI-GPT class
"""
num_special_tokens
=
kwargs
.
get
(
'num_special_tokens'
,
None
)
kwargs
.
pop
(
'num_special_tokens'
,
None
)
model
=
super
(
PreTrainedModel
,
cls
).
from_pretrained
(
pretrained_model_name_or_path
,
pretrained_model_name_or_path
,
*
inputs
,
**
kwargs
)
# Add additional embeddings for special tokens if needed
# This step also make sure we are still sharing the output and input embeddings after loading weights
model
.
set_num_special_tokens
(
num_special_tokens
)
return
model
class
OpenAIGPTModel
(
OpenAIGPTPreTrainedModel
):
"""OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").
...
...
@@ -457,13 +393,13 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size +
config.
n_special - 1] ______________________
config.vocab_size + n_special - 1] ______________________
where ``total_tokens_embeddings``
can be obtained as ``config.total_tokens_embeddings`` and
is:
where ``total_tokens_embeddings`` is:
::
total_tokens_embeddings = config.vocab_size +
config.
n_special
total_tokens_embeddings = config.vocab_size + n_special
You should use the associated indices to index the embeddings.
...
...
@@ -485,34 +421,15 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
self
.
output_attentions
=
config
.
output_attentions
self
.
output_hidden_states
=
config
.
output_hidden_states
self
.
tokens_embed
=
nn
.
Embedding
(
config
.
total_tokens_embeddings
,
config
.
n_embd
)
self
.
tokens_embed
=
nn
.
Embedding
(
config
.
vocab_size
,
config
.
n_embd
)
self
.
positions_embed
=
nn
.
Embedding
(
config
.
n_positions
,
config
.
n_embd
)
self
.
drop
=
nn
.
Dropout
(
config
.
embd_pdrop
)
self
.
h
=
nn
.
ModuleList
([
Block
(
config
.
n_ctx
,
config
,
scale
=
True
)
for
_
in
range
(
config
.
n_layer
)])
self
.
apply
(
self
.
init_weights
)
def
set_num_special_tokens
(
self
,
num_special_tokens
=
None
):
"""
Update input embeddings with new embedding matrice if needed
Args:
num_special_tokens: Special tokens to be added to the embedding matrix
TODO Lysandre filled Args
"""
if
num_special_tokens
is
None
or
self
.
config
.
n_special
==
num_special_tokens
:
return
# Update config
self
.
config
.
n_special
=
num_special_tokens
# Build new embeddings and initialize all new embeddings (in particular the special tokens)
old_embed
=
self
.
tokens_embed
self
.
tokens_embed
=
nn
.
Embedding
(
self
.
config
.
total_tokens_embeddings
,
self
.
config
.
n_embd
)
self
.
tokens_embed
.
to
(
old_embed
.
weight
.
device
)
self
.
init_weights
(
self
.
tokens_embed
)
# Copy word embeddings from the previous weights
self
.
tokens_embed
.
weight
.
data
[:
self
.
config
.
vocab_size
,
:]
=
old_embed
.
weight
.
data
[:
self
.
config
.
vocab_size
,
:]
def
_resize_token_embeddings
(
self
,
new_num_tokens
):
self
.
tokens_embed
=
self
.
_get_resized_embeddings
(
self
.
tokens_embed
,
new_num_tokens
)
def
_prune_heads
(
self
,
heads_to_prune
):
""" Prunes heads of the model.
...
...
@@ -657,24 +574,20 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
def
__init__
(
self
,
config
):
super
(
OpenAIGPTLMHeadModel
,
self
).
__init__
(
config
)
self
.
transformer
=
OpenAIGPTModel
(
config
)
self
.
lm_head
=
OpenAIGPTLMHead
(
self
.
transformer
.
tokens_embed
.
weight
,
config
)
self
.
apply
(
self
.
init_weights
)
def
set_num_special_tokens
(
self
,
num_special_tokens
,
predict_special_tokens
=
True
):
"""
Update input and output embeddings with new embedding matrix. Make sure we are sharing the embeddings
Args:
num_special_tokens: Special tokens to be added to the embedding matrix
predict_special_tokens: if set to True, the model will try and predict the specified ``num_special_tokens``.
Defaults to True.
self
.
lm_head
=
nn
.
Linear
(
config
.
n_embd
,
config
.
vocab_size
,
bias
=
False
)
TODO Lysandre filled Args
self
.
apply
(
self
.
init_weights
)
self
.
tie_weights
()
def
tie_weights
(
self
):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self
.
config
.
predict_special_tokens
=
self
.
transformer
.
config
.
predict_special_tokens
=
predict_special_tokens
self
.
transformer
.
set_num_special_tokens
(
num_special_tokens
)
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
tokens_embed
.
weight
,
predict_special_tokens
=
predict_special_tokens
)
input_embeddings
=
self
.
transformer
.
tokens_embed
.
weight
if
self
.
config
.
torchscript
:
self
.
lm_head
.
weight
=
nn
.
Parameter
(
input_embeddings
.
clone
())
else
:
self
.
lm_head
.
weight
=
input_embeddings
# Tied weights
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
lm_labels
=
None
,
head_mask
=
None
):
"""
...
...
@@ -747,13 +660,13 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size +
config.
n_special - 1] ______________________
config.vocab_size + n_special - 1] ______________________
where ``total_tokens_embeddings``
can be obtained as ``config.total_tokens_embeddings`` and
is:
where ``total_tokens_embeddings`` is:
::
total_tokens_embeddings = config.vocab_size +
config
.n_special
total_tokens_embeddings = config.vocab_size + .n_special
You should use the associate indices to index the embeddings.
...
...
@@ -773,24 +686,21 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
super
(
OpenAIGPTDoubleHeadsModel
,
self
).
__init__
(
config
)
self
.
transformer
=
OpenAIGPTModel
(
config
)
self
.
lm_head
=
OpenAIGPTLMHead
(
self
.
transformer
.
tokens_embed
.
weight
,
config
)
self
.
lm_head
=
nn
.
Linear
(
config
.
n_embd
,
config
.
vocab_size
,
bias
=
False
)
self
.
multiple_choice_head
=
SequenceSummary
(
config
)
self
.
apply
(
self
.
init_weights
)
self
.
tie_weights
()
def
set_num_special_tokens
(
self
,
num_special_tokens
,
predict_special_tokens
=
True
):
""" Update input and output embeddings with new embedding matrix. Make sure we are sharing the embeddings.
Args:
num_special_tokens: Special tokens to be added to the embedding matrix
predict_special_tokens: if set to True, the model will try and predict the specified ``num_special_tokens``.
Defaults to True.
TODO Lysandre filled Args
def
tie_weights
(
self
):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self
.
config
.
predict_special_tokens
=
self
.
transformer
.
config
.
predict_special_tokens
=
predict_special_tokens
self
.
transformer
.
set_num_special_tokens
(
num_special_tokens
)
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
tokens_embed
.
weight
,
predict_special_tokens
=
predict_special_tokens
)
input_embeddings
=
self
.
transformer
.
tokens_embed
.
weight
if
self
.
config
.
torchscript
:
self
.
lm_head
.
weight
=
nn
.
Parameter
(
input_embeddings
.
clone
())
else
:
self
.
lm_head
.
weight
=
input_embeddings
# Tied weights
def
forward
(
self
,
input_ids
,
mc_token_ids
=
None
,
lm_labels
=
None
,
mc_labels
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
):
...
...
pytorch_transformers/modeling_transfo_xl.py
View file @
bd404735
...
...
@@ -287,6 +287,10 @@ class TransfoXLConfig(PretrainedConfig):
raise
ValueError
(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
@
property
def
vocab_size
(
self
):
return
self
.
n_token
@
property
def
hidden_size
(
self
):
return
self
.
d_model
...
...
@@ -998,6 +1002,9 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
self
.
apply
(
self
.
init_weights
)
def
_resize_token_embeddings
(
self
,
new_num_tokens
):
raise
NotImplementedError
def
backward_compatible
(
self
):
self
.
sample_softmax
=
-
1
...
...
pytorch_transformers/modeling_utils.py
View file @
bd404735
...
...
@@ -151,6 +151,7 @@ class PreTrainedModel(nn.Module):
pretrained_model_archive_map
=
{}
load_tf_weights
=
lambda
model
,
config
,
path
:
None
base_model_prefix
=
""
input_embeddings
=
None
def
__init__
(
self
,
config
,
*
inputs
,
**
kwargs
):
super
(
PreTrainedModel
,
self
).
__init__
()
...
...
@@ -164,12 +165,48 @@ class PreTrainedModel(nn.Module):
# Save config in model
self
.
config
=
config
def
_get_resized_embeddings
(
self
,
old_embeddings
,
new_num_tokens
):
# Build new embeddings
old_num_tokens
,
old_embedding_dim
=
old_embeddings
.
weight
.
size
()
new_embeddings
=
nn
.
Embedding
(
new_num_tokens
,
old_embedding_dim
)
new_embeddings
.
to
(
old_embeddings
.
weight
.
device
)
# initialize all new embeddings (in particular added tokens)
self
.
init_weights
(
new_embeddings
)
# Copy word embeddings from the previous weights
num_tokens_to_copy
=
min
(
old_num_tokens
,
new_num_tokens
)
new_embeddings
.
weight
.
data
[:
num_tokens_to_copy
,
:]
=
old_embeddings
.
weight
.
data
[:
num_tokens_to_copy
,
:]
return
new_embeddings
def
resize_token_embeddings
(
self
,
new_num_tokens
):
""" Resize input token embeddings matrix.
Args:
new_num_tokens: New number of tokens in the embedding matrix.
Increasing the size will add newly initialized vectors at the end
Reducing the size will remove vectors from the end
"""
if
new_num_tokens
==
self
.
config
.
vocab_size
:
return
base_model
=
getattr
(
self
,
self
.
base_model_prefix
,
self
)
# get the base model if needed
base_model
.
_resize_token_embeddings
(
new_num_tokens
)
# Update base model and current model config
self
.
config
.
vocab_size
=
new_num_tokens
base_model
.
vocab_size
=
new_num_tokens
# Tie weights again if needed
if
hasattr
(
self
,
'tie_weights'
):
self
.
tie_weights
()
def
prune_heads
(
self
,
heads_to_prune
):
""" Prunes heads of the base model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
model
_to_prune
=
getattr
(
self
,
self
.
base_model_prefix
,
self
)
# get the base model if needed
model
_to_prune
.
_prune_heads
(
heads_to_prune
)
base_
model
=
getattr
(
self
,
self
.
base_model_prefix
,
self
)
# get the base model if needed
base_
model
.
_prune_heads
(
heads_to_prune
)
def
save_pretrained
(
self
,
save_directory
):
""" Save a model with its configuration file to a directory, so that it
...
...
pytorch_transformers/modeling_xlm.py
View file @
bd404735
...
...
@@ -104,7 +104,6 @@ class XLMConfig(PretrainedConfig):
def
__init__
(
self
,
vocab_size_or_config_json_file
=
30145
,
n_special
=
0
,
emb_dim
=
2048
,
n_layers
=
12
,
n_heads
=
16
,
...
...
@@ -148,7 +147,6 @@ class XLMConfig(PretrainedConfig):
self
.
__dict__
[
key
]
=
value
elif
isinstance
(
vocab_size_or_config_json_file
,
int
):
self
.
n_words
=
vocab_size_or_config_json_file
self
.
n_special
=
n_special
self
.
emb_dim
=
emb_dim
self
.
n_layers
=
n_layers
self
.
n_heads
=
n_heads
...
...
@@ -183,8 +181,8 @@ class XLMConfig(PretrainedConfig):
"or the path to a pretrained model config file (str)"
)
@
property
def
total_tokens_embeddings
(
self
):
return
self
.
n_words
+
self
.
n_special
def
vocab_size
(
self
):
return
self
.
n_words
@
property
def
hidden_size
(
self
):
...
...
@@ -479,6 +477,9 @@ class XLMModel(XLMPreTrainedModel):
self
.
apply
(
self
.
init_weights
)
def
_resize_token_embeddings
(
self
,
new_num_tokens
):
self
.
embeddings
=
self
.
_get_resized_embeddings
(
self
.
embeddings
,
new_num_tokens
)
def
_prune_heads
(
self
,
heads_to_prune
):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
...
...
@@ -718,8 +719,6 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLMWithLMHeadModel
,
self
).
__init__
(
config
)
self
.
torchscript
=
config
.
torchscript
self
.
transformer
=
XLMModel
(
config
)
self
.
pred_layer
=
XLMPredLayer
(
config
)
...
...
@@ -729,7 +728,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
def
tie_weights
(
self
):
""" Make sure we are sharing the embeddings
"""
if
self
.
torchscript
:
if
self
.
config
.
torchscript
:
self
.
pred_layer
.
proj
.
weight
=
nn
.
Parameter
(
self
.
transformer
.
embeddings
.
weight
.
clone
())
else
:
self
.
pred_layer
.
proj
.
weight
=
self
.
transformer
.
embeddings
.
weight
...
...
pytorch_transformers/modeling_xlnet.py
View file @
bd404735
...
...
@@ -312,6 +312,10 @@ class XLNetConfig(PretrainedConfig):
raise
ValueError
(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
@
property
def
vocab_size
(
self
):
return
self
.
n_token
@
property
def
hidden_size
(
self
):
return
self
.
d_model
...
...
@@ -654,6 +658,9 @@ class XLNetModel(XLNetPreTrainedModel):
self
.
apply
(
self
.
init_weights
)
def
_resize_token_embeddings
(
self
,
new_num_tokens
):
self
.
word_embedding
=
self
.
_get_resized_embeddings
(
self
.
word_embedding
,
new_num_tokens
)
def
_prune_heads
(
self
,
heads_to_prune
):
logger
.
info
(
"Head pruning is not implemented for XLNet"
)
pass
...
...
@@ -970,20 +977,17 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
super
(
XLNetLMHeadModel
,
self
).
__init__
(
config
)
self
.
attn_type
=
config
.
attn_type
self
.
same_length
=
config
.
same_length
self
.
torchscript
=
config
.
torchscript
self
.
transformer
=
XLNetModel
(
config
)
self
.
lm_loss
=
nn
.
Linear
(
config
.
d_model
,
config
.
n_token
,
bias
=
True
)
# Tie weights
self
.
apply
(
self
.
init_weights
)
self
.
tie_weights
()
def
tie_weights
(
self
):
""" Make sure we are sharing the embeddings
"""
if
self
.
torchscript
:
if
self
.
config
.
torchscript
:
self
.
lm_loss
.
weight
=
nn
.
Parameter
(
self
.
transformer
.
word_embedding
.
weight
.
clone
())
else
:
self
.
lm_loss
.
weight
=
self
.
transformer
.
word_embedding
.
weight
...
...
pytorch_transformers/tests/modeling_bert_test.py
View file @
bd404735
...
...
@@ -26,7 +26,7 @@ from pytorch_transformers import (BertConfig, BertModel, BertForMaskedLM,
BertForTokenClassification
,
BertForMultipleChoice
)
from
pytorch_transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_
tests_
common
s
import
(
create_and_check_commons
,
ConfigTester
,
ids_tensor
)
from
.modeling_common
_test
import
(
create_and_check_commons
,
ConfigTester
,
ids_tensor
)
class
BertModelTest
(
unittest
.
TestCase
):
...
...
pytorch_transformers/tests/modeling_
tests_
common
s
.py
→
pytorch_transformers/tests/modeling_common
_test
.py
View file @
bd404735
...
...
@@ -22,8 +22,15 @@ import shutil
import
json
import
random
import
unittest
import
logging
import
torch
from
pytorch_transformers
import
PretrainedConfig
,
PreTrainedModel
from
pytorch_transformers.modeling_bert
import
BertModel
,
BertConfig
,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
def
_config_zero_init
(
config
):
configs_no_init
=
copy
.
deepcopy
(
config
)
for
key
in
configs_no_init
.
__dict__
.
keys
():
...
...
@@ -242,6 +249,7 @@ class ConfigTester(object):
def
create_and_test_config_common_properties
(
self
):
config
=
self
.
config_class
(
**
self
.
inputs_dict
)
self
.
parent
.
assertTrue
(
hasattr
(
config
,
'vocab_size'
))
self
.
parent
.
assertTrue
(
hasattr
(
config
,
'hidden_size'
))
self
.
parent
.
assertTrue
(
hasattr
(
config
,
'num_attention_heads'
))
self
.
parent
.
assertTrue
(
hasattr
(
config
,
'num_hidden_layers'
))
...
...
@@ -276,7 +284,6 @@ class GPTModelTester(object):
use_token_type_ids
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
n_special
=
1
,
n_positions
=
33
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
...
...
@@ -299,7 +306,6 @@ class GPTModelTester(object):
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
n_special
=
n_special
self
.
n_positions
=
n_positions
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
...
...
@@ -316,7 +322,7 @@ class GPTModelTester(object):
self
.
all_model_classes
=
(
base_model_class
,
lm_head_model_class
,
double_head_model_class
)
def
prepare_config_and_inputs
(
self
):
total_num_tokens
=
self
.
vocab_size
+
self
.
n_special
total_num_tokens
=
self
.
vocab_size
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
n_choices
,
self
.
seq_length
],
total_num_tokens
)
position_ids
=
None
...
...
@@ -338,7 +344,6 @@ class GPTModelTester(object):
config
=
self
.
config_class
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
n_special
=
self
.
n_special
,
n_positions
=
self
.
n_positions
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
...
...
@@ -370,7 +375,7 @@ class GPTModelTester(object):
outputs
=
model
(
input_ids
,
position_ids
,
token_type_ids
,
lm_labels
)
loss
,
lm_logits
=
outputs
[:
2
]
total_voc
=
self
.
n_special
+
self
.
vocab_size
total_voc
=
self
.
vocab_size
self
.
parent
.
assertListEqual
(
list
(
lm_logits
.
size
()),
[
self
.
batch_size
,
self
.
n_choices
,
self
.
seq_length
,
total_voc
])
...
...
@@ -400,7 +405,7 @@ class GPTModelTester(object):
lm_loss
,
mc_loss
,
lm_logits
,
mc_logits
=
outputs
[:
4
]
loss
=
[
lm_loss
,
mc_loss
]
total_voc
=
self
.
n_special
+
self
.
vocab_size
total_voc
=
self
.
vocab_size
self
.
parent
.
assertListEqual
(
list
(
lm_logits
.
size
()),
[
self
.
batch_size
,
self
.
n_choices
,
self
.
seq_length
,
total_voc
])
...
...
@@ -441,6 +446,30 @@ class GPTModelTester(object):
self
.
create_and_check_commons
(
*
config_and_inputs
)
def
run_slow_tests
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
self
.
create_and_check_model_from_pretrained
(
*
config_and_inputs
)
self
.
create_and_check_model_from_pretrained
()
class
ModelUtilsTest
(
unittest
.
TestCase
):
def
test_model_from_pretrained
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
for
model_name
in
list
(
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
config
=
BertConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
PretrainedConfig
)
model
=
BertModel
.
from_pretrained
(
model_name
)
model
,
loading_info
=
BertModel
.
from_pretrained
(
model_name
,
output_loading_info
=
True
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
PreTrainedModel
)
for
value
in
loading_info
.
values
():
self
.
assertEqual
(
len
(
value
),
0
)
config
=
BertConfig
.
from_pretrained
(
model_name
,
output_attentions
=
True
,
output_hidden_states
=
True
)
model
=
BertModel
.
from_pretrained
(
model_name
,
output_attentions
=
True
,
output_hidden_states
=
True
)
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
True
)
self
.
assertEqual
(
model
.
config
,
config
)
if
__name__
==
"__main__"
:
unittest
.
main
()
pytorch_transformers/tests/modeling_gpt2_test.py
View file @
bd404735
...
...
@@ -28,7 +28,7 @@ import torch
from
pytorch_transformers
import
(
GPT2Config
,
GPT2Model
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
from
.modeling_
tests_
common
s
import
(
create_and_check_commons
,
ConfigTester
,
GPTModelTester
)
from
.modeling_common
_test
import
(
create_and_check_commons
,
ConfigTester
,
GPTModelTester
)
class
GPT2ModelTest
(
unittest
.
TestCase
):
...
...
pytorch_transformers/tests/modeling_openai_test.py
View file @
bd404735
...
...
@@ -24,7 +24,7 @@ import torch
from
pytorch_transformers
import
(
OpenAIGPTConfig
,
OpenAIGPTModel
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
from
.modeling_
tests_
common
s
import
(
create_and_check_commons
,
ConfigTester
,
GPTModelTester
)
from
.modeling_common
_test
import
(
create_and_check_commons
,
ConfigTester
,
GPTModelTester
)
class
OpenAIModelTest
(
unittest
.
TestCase
):
...
...
pytorch_transformers/tests/modeling_transfo_xl_test.py
View file @
bd404735
...
...
@@ -28,7 +28,7 @@ import torch
from
pytorch_transformers
import
(
TransfoXLConfig
,
TransfoXLModel
,
TransfoXLLMHeadModel
)
from
pytorch_transformers.modeling_transfo_xl
import
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_
tests_
common
s
import
ConfigTester
,
create_and_check_commons
,
ids_tensor
from
.modeling_common
_test
import
ConfigTester
,
create_and_check_commons
,
ids_tensor
class
TransfoXLModelTest
(
unittest
.
TestCase
):
class
TransfoXLModelTester
(
object
):
...
...
pytorch_transformers/tests/modeling_utils_test.py
deleted
100644 → 0
View file @
50e62a4c
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
logging
from
pytorch_transformers
import
PretrainedConfig
,
PreTrainedModel
from
pytorch_transformers.modeling_bert
import
BertModel
,
BertConfig
,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
class
ModelUtilsTest
(
unittest
.
TestCase
):
def
test_model_from_pretrained
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
for
model_name
in
list
(
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
config
=
BertConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
PretrainedConfig
)
model
=
BertModel
.
from_pretrained
(
model_name
)
model
,
loading_info
=
BertModel
.
from_pretrained
(
model_name
,
output_loading_info
=
True
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
PreTrainedModel
)
for
value
in
loading_info
.
values
():
self
.
assertEqual
(
len
(
value
),
0
)
config
=
BertConfig
.
from_pretrained
(
model_name
,
output_attentions
=
True
,
output_hidden_states
=
True
)
model
=
BertModel
.
from_pretrained
(
model_name
,
output_attentions
=
True
,
output_hidden_states
=
True
)
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
True
)
self
.
assertEqual
(
model
.
config
,
config
)
if
__name__
==
"__main__"
:
unittest
.
main
()
pytorch_transformers/tests/modeling_xlm_test.py
View file @
bd404735
...
...
@@ -23,7 +23,7 @@ import pytest
from
pytorch_transformers
import
(
XLMConfig
,
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMForSequenceClassification
)
from
pytorch_transformers.modeling_xlm
import
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_
tests_
common
s
import
(
create_and_check_commons
,
ConfigTester
,
ids_tensor
)
from
.modeling_common
_test
import
(
create_and_check_commons
,
ConfigTester
,
ids_tensor
)
class
XLMModelTest
(
unittest
.
TestCase
):
...
...
pytorch_transformers/tests/modeling_xlnet_test.py
View file @
bd404735
...
...
@@ -28,7 +28,7 @@ import torch
from
pytorch_transformers
import
(
XLNetConfig
,
XLNetModel
,
XLNetLMHeadModel
,
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
from
pytorch_transformers.modeling_xlnet
import
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_
tests_
common
s
import
ConfigTester
,
create_and_check_commons
,
ids_tensor
from
.modeling_common
_test
import
ConfigTester
,
create_and_check_commons
,
ids_tensor
class
XLNetModelTest
(
unittest
.
TestCase
):
class
XLNetModelTester
(
object
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment