Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
bb04edb4
Commit
bb04edb4
authored
Oct 10, 2019
by
thomwolf
Browse files
Add tests that TF 2.0 model can be integrated with other Keras modules
parent
6596e3d5
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
56 additions
and
1 deletion
+56
-1
transformers/tests/modeling_tf_common_test.py
transformers/tests/modeling_tf_common_test.py
+56
-1
No files found.
transformers/tests/modeling_tf_common_test.py
View file @
bb04edb4
...
@@ -22,6 +22,7 @@ import random
...
@@ -22,6 +22,7 @@ import random
import
shutil
import
shutil
import
unittest
import
unittest
import
uuid
import
uuid
import
tempfile
import
pytest
import
pytest
import
sys
import
sys
...
@@ -36,6 +37,20 @@ if is_tf_available():
...
@@ -36,6 +37,20 @@ if is_tf_available():
else
:
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
if
sys
.
version_info
[
0
]
==
2
:
import
cPickle
as
pickle
class
TemporaryDirectory
(
object
):
"""Context manager for tempfile.mkdtemp() so it's usable with "with" statement."""
def
__enter__
(
self
):
self
.
name
=
tempfile
.
mkdtemp
()
return
self
.
name
def
__exit__
(
self
,
exc_type
,
exc_value
,
traceback
):
shutil
.
rmtree
(
self
.
name
)
else
:
import
pickle
TemporaryDirectory
=
tempfile
.
TemporaryDirectory
unicode
=
str
def
_config_zero_init
(
config
):
def
_config_zero_init
(
config
):
configs_no_init
=
copy
.
deepcopy
(
config
)
configs_no_init
=
copy
.
deepcopy
(
config
)
...
@@ -66,13 +81,25 @@ class TFCommonTestCases:
...
@@ -66,13 +81,25 @@ class TFCommonTestCases:
# self.assertIn(param.data.mean().item(), [0.0, 1.0],
# self.assertIn(param.data.mean().item(), [0.0, 1.0],
# msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
# msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
def
test_save_load
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
)
outputs
=
model
(
inputs_dict
)
with
TemporaryDirectory
()
as
tmpdirname
:
model
.
save_pretrained
(
tmpdirname
)
model
=
model_class
.
from_pretrained
(
tmpdirname
)
after_outputs
=
model
(
inputs_dict
)
max_diff
=
np
.
amax
(
np
.
abs
(
after_outputs
[
0
].
numpy
()
-
outputs
[
0
].
numpy
()))
self
.
assertLessEqual
(
max_diff
,
1e-5
)
def
test_pt_tf_model_equivalence
(
self
):
def
test_pt_tf_model_equivalence
(
self
):
if
not
is_torch_available
():
if
not
is_torch_available
():
return
return
import
torch
import
torch
import
numpy
as
np
import
transformers
import
transformers
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
...
@@ -99,6 +126,34 @@ class TFCommonTestCases:
...
@@ -99,6 +126,34 @@ class TFCommonTestCases:
max_diff
=
np
.
amax
(
np
.
abs
(
tfo
[
0
].
numpy
()
-
pto
[
0
].
numpy
()))
max_diff
=
np
.
amax
(
np
.
abs
(
tfo
[
0
].
numpy
()
-
pto
[
0
].
numpy
()))
self
.
assertLessEqual
(
max_diff
,
2e-2
)
self
.
assertLessEqual
(
max_diff
,
2e-2
)
def
test_compile_tf_model
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
input_ids
=
tf
.
keras
.
Input
(
batch_shape
=
(
2
,
2000
),
name
=
'input_ids'
,
dtype
=
'int32'
)
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
3e-5
,
epsilon
=
1e-08
,
clipnorm
=
1.0
)
loss
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
)
metric
=
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
'accuracy'
)
for
model_class
in
self
.
all_model_classes
:
# Prepare our model
model
=
model_class
(
config
)
# Let's load it from the disk to be sure we can use pretrained weights
with
TemporaryDirectory
()
as
tmpdirname
:
outputs
=
model
(
inputs_dict
)
# build the model
model
.
save_pretrained
(
tmpdirname
)
model
=
model_class
.
from_pretrained
(
tmpdirname
)
outputs_dict
=
model
(
input_ids
)
hidden_states
=
outputs_dict
[
0
]
# Add a dense layer on top to test intetgration with other keras modules
outputs
=
tf
.
keras
.
layers
.
Dense
(
2
,
activation
=
'softmax'
,
name
=
'outputs'
)(
hidden_states
)
# Compile extended model
extended_model
=
tf
.
keras
.
Model
(
inputs
=
[
input_ids
],
outputs
=
[
outputs
])
extended_model
.
compile
(
optimizer
=
optimizer
,
loss
=
loss
,
metrics
=
[
metric
])
def
test_keyword_and_dict_args
(
self
):
def
test_keyword_and_dict_args
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment