Unverified Commit bad35839 authored by Jean Vancoppenolle's avatar Jean Vancoppenolle Committed by GitHub
Browse files

Add support for pretraining recurring span selection to Splinter (#17247)



* Add SplinterForSpanSelection for pre-training recurring span selection.

* Formatting.

* Rename SplinterForSpanSelection to SplinterForPreTraining.

* Ensure repo consistency

* Fixup changes

* Address SplinterForPreTraining PR comments

* Incorporate feedback and derive multiple question tokens per example.

* Update src/transformers/models/splinter/modeling_splinter.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/splinter/modeling_splinter.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: default avatarJean Vancoppenole <jean.vancoppenolle@retresco.de>
Co-authored-by: default avatarTobias Günther <tobias.guenther@retresco.de>
Co-authored-by: default avatarTobias Günther <github@tobigue.de>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 05113055
......@@ -72,3 +72,8 @@ This model was contributed by [yuvalkirstain](https://huggingface.co/yuvalkirsta
[[autodoc]] SplinterForQuestionAnswering
- forward
## SplinterForPreTraining
[[autodoc]] SplinterForPreTraining
- forward
......@@ -1532,6 +1532,7 @@ else:
_import_structure["models.splinter"].extend(
[
"SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST",
"SplinterForPreTraining",
"SplinterForQuestionAnswering",
"SplinterLayer",
"SplinterModel",
......@@ -3830,6 +3831,7 @@ if TYPE_CHECKING:
from .models.speech_to_text_2 import Speech2Text2ForCausalLM, Speech2Text2PreTrainedModel
from .models.splinter import (
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST,
SplinterForPreTraining,
SplinterForQuestionAnswering,
SplinterLayer,
SplinterModel,
......
......@@ -161,6 +161,7 @@ MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
("openai-gpt", "OpenAIGPTLMHeadModel"),
("retribert", "RetriBertModel"),
("roberta", "RobertaForMaskedLM"),
("splinter", "SplinterForPreTraining"),
("squeezebert", "SqueezeBertForMaskedLM"),
("t5", "T5ForConditionalGeneration"),
("tapas", "TapasForMaskedLM"),
......
......@@ -42,6 +42,7 @@ else:
_import_structure["modeling_splinter"] = [
"SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST",
"SplinterForQuestionAnswering",
"SplinterForPreTraining",
"SplinterLayer",
"SplinterModel",
"SplinterPreTrainedModel",
......@@ -68,6 +69,7 @@ if TYPE_CHECKING:
else:
from .modeling_splinter import (
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST,
SplinterForPreTraining,
SplinterForQuestionAnswering,
SplinterLayer,
SplinterModel,
......
......@@ -16,6 +16,7 @@
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
......@@ -24,7 +25,7 @@ from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, QuestionAnsweringModelOutput
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, ModelOutput, QuestionAnsweringModelOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
......@@ -940,3 +941,171 @@ class SplinterForQuestionAnswering(SplinterPreTrainedModel):
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@dataclass
class SplinterForPreTrainingOutput(ModelOutput):
"""
Class for outputs of Splinter as a span selection model.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when start and end positions are provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@add_start_docstrings(
"""
Splinter Model for the recurring span selection task as done during the pretraining. The difference to the QA task
is that we do not have a question, but multiple question tokens that replace the occurrences of recurring spans
instead.
""",
SPLINTER_START_DOCSTRING,
)
class SplinterForPreTraining(SplinterPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.splinter = SplinterModel(config)
self.splinter_qass = QuestionAwareSpanSelectionHead(config)
self.question_token_id = config.question_token_id
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
SPLINTER_INPUTS_DOCSTRING.format("batch_size, num_questions, sequence_length")
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
question_positions: Optional[torch.LongTensor] = None,
) -> Union[Tuple, SplinterForPreTrainingOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size,
num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be
the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size,
sequence_length)`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if question_positions is None and start_positions is not None and end_positions is not None:
raise TypeError("question_positions must be specified in order to calculate the loss")
elif question_positions is None and input_ids is None:
raise TypeError("question_positions must be specified when input_embeds is used")
elif question_positions is None:
question_positions = self._prepare_question_positions(input_ids)
outputs = self.splinter(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
batch_size, sequence_length, dim = sequence_output.size()
# [batch_size, num_questions, sequence_length]
start_logits, end_logits = self.splinter_qass(sequence_output, question_positions)
num_questions = question_positions.size(1)
if attention_mask is not None:
attention_mask_for_each_question = attention_mask.unsqueeze(1).expand(
batch_size, num_questions, sequence_length
)
start_logits = start_logits + (1 - attention_mask_for_each_question) * -10000.0
end_logits = end_logits + (1 - attention_mask_for_each_question) * -10000.0
total_loss = None
# [batch_size, num_questions, sequence_length]
if start_positions is not None and end_positions is not None:
# sometimes the start/end positions are outside our model inputs, we ignore these terms
start_positions.clamp_(0, max(0, sequence_length - 1))
end_positions.clamp_(0, max(0, sequence_length - 1))
# Ignore zero positions in the loss. Splinter never predicts zero
# during pretraining and zero is used for padding question
# tokens as well as for start and end positions of padded
# question tokens.
loss_fct = CrossEntropyLoss(ignore_index=self.config.pad_token_id)
start_loss = loss_fct(
start_logits.view(batch_size * num_questions, sequence_length),
start_positions.view(batch_size * num_questions),
)
end_loss = loss_fct(
end_logits.view(batch_size * num_questions, sequence_length),
end_positions.view(batch_size * num_questions),
)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return SplinterForPreTrainingOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _prepare_question_positions(self, input_ids: torch.Tensor) -> torch.Tensor:
rows, flat_positions = torch.where(input_ids == self.config.question_token_id)
num_questions = torch.bincount(rows)
positions = torch.full(
(input_ids.size(0), num_questions.max()),
self.config.pad_token_id,
dtype=torch.long,
device=input_ids.device,
)
cols = torch.cat([torch.arange(n) for n in num_questions])
positions[rows, cols] = flat_positions
return positions
......@@ -14,7 +14,7 @@
# limitations under the License.
""" Testing suite for the PyTorch Splinter model. """
import copy
import unittest
from transformers import is_torch_available
......@@ -27,7 +27,7 @@ from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attenti
if is_torch_available():
import torch
from transformers import SplinterConfig, SplinterForQuestionAnswering, SplinterModel
from transformers import SplinterConfig, SplinterForPreTraining, SplinterForQuestionAnswering, SplinterModel
from transformers.models.splinter.modeling_splinter import SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST
......@@ -36,6 +36,7 @@ class SplinterModelTester:
self,
parent,
batch_size=13,
num_questions=3,
seq_length=7,
is_training=True,
use_input_mask=True,
......@@ -43,6 +44,7 @@ class SplinterModelTester:
use_labels=True,
vocab_size=99,
hidden_size=32,
question_token_id=1,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
......@@ -59,6 +61,7 @@ class SplinterModelTester:
):
self.parent = parent
self.batch_size = batch_size
self.num_questions = num_questions
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
......@@ -66,6 +69,7 @@ class SplinterModelTester:
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.question_token_id = question_token_id
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
......@@ -82,6 +86,7 @@ class SplinterModelTester:
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids[:, 1] = self.question_token_id
input_mask = None
if self.use_input_mask:
......@@ -91,13 +96,13 @@ class SplinterModelTester:
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
start_positions = None
end_positions = None
question_positions = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
start_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size)
end_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size)
question_positions = ids_tensor([self.batch_size, self.num_questions], self.num_labels)
config = SplinterConfig(
vocab_size=self.vocab_size,
......@@ -112,12 +117,20 @@ class SplinterModelTester:
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
question_token_id=self.question_token_id,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
return (config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
self,
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
):
model = SplinterModel(config=config)
model.to(torch_device)
......@@ -128,7 +141,14 @@ class SplinterModelTester:
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
self,
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
):
model = SplinterForQuestionAnswering(config=config)
model.to(torch_device)
......@@ -137,12 +157,36 @@ class SplinterModelTester:
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
start_positions=start_positions[:, 0],
end_positions=end_positions[:, 0],
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_pretraining(
self,
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
):
model = SplinterForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=start_positions,
end_positions=end_positions,
question_positions=question_positions,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.num_questions, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.num_questions, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
......@@ -150,11 +194,15 @@ class SplinterModelTester:
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
start_positions,
end_positions,
question_positions,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
......@@ -165,11 +213,44 @@ class SplinterModelTest(ModelTesterMixin, unittest.TestCase):
(
SplinterModel,
SplinterForQuestionAnswering,
SplinterForPreTraining,
)
if is_torch_available()
else ()
)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if issubclass(model_class, SplinterForPreTraining):
inputs_dict["start_positions"] = torch.zeros(
self.model_tester.batch_size,
self.model_tester.num_questions,
dtype=torch.long,
device=torch_device,
)
inputs_dict["end_positions"] = torch.zeros(
self.model_tester.batch_size,
self.model_tester.num_questions,
dtype=torch.long,
device=torch_device,
)
inputs_dict["question_positions"] = torch.zeros(
self.model_tester.batch_size,
self.model_tester.num_questions,
dtype=torch.long,
device=torch_device,
)
elif issubclass(model_class, SplinterForQuestionAnswering):
inputs_dict["start_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
inputs_dict["end_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = SplinterModelTester(self)
self.config_tester = ConfigTester(self, config_class=SplinterConfig, hidden_size=37)
......@@ -191,6 +272,44 @@ class SplinterModelTest(ModelTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
if isinstance(model, SplinterForPreTraining):
with self.assertRaises(TypeError):
# question_positions must not be None.
model(**inputs)[0]
else:
model(**inputs)[0]
@slow
def test_model_from_pretrained(self):
for model_name in SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......@@ -217,3 +336,122 @@ class SplinterModelIntegrationTest(unittest.TestCase):
self.assertEqual(torch.argmax(output.start_logits), 10)
self.assertEqual(torch.argmax(output.end_logits), 12)
@slow
def test_splinter_pretraining(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
)
question_positions = torch.tensor([[1, 5]], dtype=torch.long)
output = model(input_ids, question_positions=question_positions)
expected_shape = torch.Size((1, 2, 16))
self.assertEqual(output.start_logits.shape, expected_shape)
self.assertEqual(output.end_logits.shape, expected_shape)
self.assertEqual(torch.argmax(output.start_logits[0, 0]), 7)
self.assertEqual(torch.argmax(output.end_logits[0, 0]), 7)
self.assertEqual(torch.argmax(output.start_logits[0, 1]), 10)
self.assertEqual(torch.argmax(output.end_logits[0, 1]), 12)
@slow
def test_splinter_pretraining_loss_requires_question_positions(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
)
start_positions = torch.tensor([[7, 10]], dtype=torch.long)
end_positions = torch.tensor([7, 12], dtype=torch.long)
with self.assertRaises(TypeError):
model(
input_ids,
start_positions=start_positions,
end_positions=end_positions,
)
@slow
def test_splinter_pretraining_loss(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
]
)
start_positions = torch.tensor([[7, 10], [7, 10]], dtype=torch.long)
end_positions = torch.tensor([[7, 12], [7, 12]], dtype=torch.long)
question_positions = torch.tensor([[1, 5], [1, 5]], dtype=torch.long)
output = model(
input_ids,
start_positions=start_positions,
end_positions=end_positions,
question_positions=question_positions,
)
self.assertAlmostEqual(output.loss.item(), 0.0024, 4)
@slow
def test_splinter_pretraining_loss_with_padding(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
]
)
start_positions = torch.tensor([[7, 10]], dtype=torch.long)
end_positions = torch.tensor([7, 12], dtype=torch.long)
question_positions = torch.tensor([[1, 5]], dtype=torch.long)
start_positions_with_padding = torch.tensor([[7, 10, 0]], dtype=torch.long)
end_positions_with_padding = torch.tensor([7, 12, 0], dtype=torch.long)
question_positions_with_padding = torch.tensor([[1, 5, 0]], dtype=torch.long)
output = model(
input_ids,
start_positions=start_positions,
end_positions=end_positions,
question_positions=question_positions,
)
output_with_padding = model(
input_ids,
start_positions=start_positions_with_padding,
end_positions=end_positions_with_padding,
question_positions=question_positions_with_padding,
)
self.assertAlmostEqual(output.loss.item(), output_with_padding.loss.item(), 4)
# Note that the original code uses 0 to denote padded question tokens
# and their start and end positions. As the pad_token_id of the model's
# config is used for the losse's ignore_index in SplinterForPreTraining,
# we add this test to ensure anybody making changes to the default
# value of the config, will be aware of the implication.
self.assertEqual(model.config.pad_token_id, 0)
@slow
def test_splinter_pretraining_prepare_question_positions(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
input_ids = torch.tensor(
[
[101, 104, 1, 2, 104, 3, 4, 102],
[101, 1, 104, 2, 104, 3, 104, 102],
[101, 1, 2, 104, 104, 3, 4, 102],
[101, 1, 2, 3, 4, 5, 104, 102],
]
)
question_positions = torch.tensor([[1, 4, 0], [2, 4, 6], [3, 4, 0], [6, 0, 0]], dtype=torch.long)
output_without_positions = model(input_ids)
output_with_positions = model(input_ids, question_positions=question_positions)
self.assertTrue((output_without_positions.start_logits == output_with_positions.start_logits).all())
self.assertTrue((output_without_positions.end_logits == output_with_positions.end_logits).all())
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment