Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
b803b067
Commit
b803b067
authored
Jan 13, 2020
by
Julien Chaumond
Browse files
Config to Model mapping
parent
cf8a70bf
Changes
17
Show whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
58 additions
and
55 deletions
+58
-55
examples/summarization/configuration_bertabs.py
examples/summarization/configuration_bertabs.py
+1
-0
src/transformers/configuration_albert.py
src/transformers/configuration_albert.py
+1
-0
src/transformers/configuration_auto.py
src/transformers/configuration_auto.py
+1
-1
src/transformers/configuration_bert.py
src/transformers/configuration_bert.py
+1
-0
src/transformers/configuration_camembert.py
src/transformers/configuration_camembert.py
+1
-0
src/transformers/configuration_ctrl.py
src/transformers/configuration_ctrl.py
+1
-0
src/transformers/configuration_distilbert.py
src/transformers/configuration_distilbert.py
+1
-0
src/transformers/configuration_gpt2.py
src/transformers/configuration_gpt2.py
+1
-0
src/transformers/configuration_openai.py
src/transformers/configuration_openai.py
+1
-0
src/transformers/configuration_t5.py
src/transformers/configuration_t5.py
+1
-0
src/transformers/configuration_transfo_xl.py
src/transformers/configuration_transfo_xl.py
+1
-0
src/transformers/configuration_utils.py
src/transformers/configuration_utils.py
+5
-4
src/transformers/configuration_xlm.py
src/transformers/configuration_xlm.py
+1
-0
src/transformers/configuration_xlm_roberta.py
src/transformers/configuration_xlm_roberta.py
+1
-0
src/transformers/configuration_xlnet.py
src/transformers/configuration_xlnet.py
+1
-0
src/transformers/modeling_auto.py
src/transformers/modeling_auto.py
+38
-50
templates/adding_a_new_model/configuration_xxx.py
templates/adding_a_new_model/configuration_xxx.py
+1
-0
No files found.
examples/summarization/configuration_bertabs.py
View file @
b803b067
...
...
@@ -62,6 +62,7 @@ class BertAbsConfig(PretrainedConfig):
"""
pretrained_config_archive_map
=
BERTABS_FINETUNED_CONFIG_MAP
model_type
=
"bertabs"
def
__init__
(
self
,
...
...
src/transformers/configuration_albert.py
View file @
b803b067
...
...
@@ -37,6 +37,7 @@ class AlbertConfig(PretrainedConfig):
"""
pretrained_config_archive_map
=
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"albert"
def
__init__
(
self
,
...
...
src/transformers/configuration_auto.py
View file @
b803b067
...
...
@@ -188,7 +188,7 @@ class AutoConfig:
assert unused_kwargs == {'foo': False}
"""
config_dict
,
_
=
PretrainedConfig
.
resolved
_config_dict
(
config_dict
,
_
=
PretrainedConfig
.
get
_config_dict
(
pretrained_model_name_or_path
,
pretrained_config_archive_map
=
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP
,
**
kwargs
)
...
...
src/transformers/configuration_bert.py
View file @
b803b067
...
...
@@ -78,6 +78,7 @@ class BertConfig(PretrainedConfig):
layer_norm_eps: The epsilon used by LayerNorm.
"""
pretrained_config_archive_map
=
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"bert"
def
__init__
(
self
,
...
...
src/transformers/configuration_camembert.py
View file @
b803b067
...
...
@@ -30,3 +30,4 @@ CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class
CamembertConfig
(
RobertaConfig
):
pretrained_config_archive_map
=
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"camembert"
src/transformers/configuration_ctrl.py
View file @
b803b067
...
...
@@ -48,6 +48,7 @@ class CTRLConfig(PretrainedConfig):
"""
pretrained_config_archive_map
=
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"ctrl"
def
__init__
(
self
,
...
...
src/transformers/configuration_distilbert.py
View file @
b803b067
...
...
@@ -32,6 +32,7 @@ DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class
DistilBertConfig
(
PretrainedConfig
):
pretrained_config_archive_map
=
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"distilbert"
def
__init__
(
self
,
...
...
src/transformers/configuration_gpt2.py
View file @
b803b067
...
...
@@ -54,6 +54,7 @@ class GPT2Config(PretrainedConfig):
"""
pretrained_config_archive_map
=
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"gpt2"
def
__init__
(
self
,
...
...
src/transformers/configuration_openai.py
View file @
b803b067
...
...
@@ -54,6 +54,7 @@ class OpenAIGPTConfig(PretrainedConfig):
"""
pretrained_config_archive_map
=
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"openai-gpt"
def
__init__
(
self
,
...
...
src/transformers/configuration_t5.py
View file @
b803b067
...
...
@@ -60,6 +60,7 @@ class T5Config(PretrainedConfig):
layer_norm_eps: The epsilon used by LayerNorm.
"""
pretrained_config_archive_map
=
T5_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"t5"
def
__init__
(
self
,
...
...
src/transformers/configuration_transfo_xl.py
View file @
b803b067
...
...
@@ -65,6 +65,7 @@ class TransfoXLConfig(PretrainedConfig):
"""
pretrained_config_archive_map
=
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"transfo-xl"
def
__init__
(
self
,
...
...
src/transformers/configuration_utils.py
View file @
b803b067
...
...
@@ -46,7 +46,8 @@ class PretrainedConfig(object):
``output_hidden_states``: string, default `False`. Should the model returns all hidden-states.
``torchscript``: string, default `False`. Is the model used with Torchscript.
"""
pretrained_config_archive_map
=
{}
pretrained_config_archive_map
:
Dict
[
str
,
str
]
=
{}
model_type
:
str
def
__init__
(
self
,
**
kwargs
):
# Attributes with defaults
...
...
@@ -155,11 +156,11 @@ class PretrainedConfig(object):
assert unused_kwargs == {'foo': False}
"""
config_dict
,
kwargs
=
cls
.
resolved
_config_dict
(
pretrained_model_name_or_path
,
**
kwargs
)
config_dict
,
kwargs
=
cls
.
get
_config_dict
(
pretrained_model_name_or_path
,
**
kwargs
)
return
cls
.
from_dict
(
config_dict
,
**
kwargs
)
@
classmethod
def
resolved
_config_dict
(
def
get
_config_dict
(
cls
,
pretrained_model_name_or_path
:
str
,
pretrained_config_archive_map
:
Optional
[
Dict
]
=
None
,
**
kwargs
)
->
Tuple
[
Dict
,
Dict
]:
"""
...
...
@@ -257,7 +258,7 @@ class PretrainedConfig(object):
@
classmethod
def
from_json_file
(
cls
,
json_file
:
str
):
"""Constructs a `Config` from a json file of parameters."""
"""Constructs a `Config` from
the path to
a json file of parameters."""
config_dict
=
cls
.
_dict_from_json_file
(
json_file
)
return
cls
(
**
config_dict
)
...
...
src/transformers/configuration_xlm.py
View file @
b803b067
...
...
@@ -78,6 +78,7 @@ class XLMConfig(PretrainedConfig):
"""
pretrained_config_archive_map
=
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"xlm"
def
__init__
(
self
,
...
...
src/transformers/configuration_xlm_roberta.py
View file @
b803b067
...
...
@@ -35,3 +35,4 @@ XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class
XLMRobertaConfig
(
RobertaConfig
):
pretrained_config_archive_map
=
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"xlm-roberta"
src/transformers/configuration_xlnet.py
View file @
b803b067
...
...
@@ -69,6 +69,7 @@ class XLNetConfig(PretrainedConfig):
"""
pretrained_config_archive_map
=
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"xlnet"
def
__init__
(
self
,
...
...
src/transformers/modeling_auto.py
View file @
b803b067
...
...
@@ -16,6 +16,8 @@
import
logging
from
collections
import
OrderedDict
from
typing
import
Type
from
.configuration_auto
import
(
AlbertConfig
,
...
...
@@ -76,6 +78,7 @@ from .modeling_roberta import (
)
from
.modeling_t5
import
T5_PRETRAINED_MODEL_ARCHIVE_MAP
,
T5Model
,
T5WithLMHeadModel
from
.modeling_transfo_xl
import
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
,
TransfoXLLMHeadModel
,
TransfoXLModel
from
.modeling_utils
import
PreTrainedModel
from
.modeling_xlm
import
(
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
,
XLMForQuestionAnswering
,
...
...
@@ -123,6 +126,35 @@ ALL_PRETRAINED_MODEL_ARCHIVE_MAP = dict(
for
key
,
value
,
in
pretrained_map
.
items
()
)
MODEL_MAPPING
:
OrderedDict
[
Type
[
PretrainedConfig
],
Type
[
PreTrainedModel
]]
=
OrderedDict
(
[
(
T5Config
,
T5Model
),
(
DistilBertConfig
,
DistilBertModel
),
(
AlbertConfig
,
AlbertModel
),
(
CamembertConfig
,
CamembertModel
),
(
RobertaConfig
,
XLMRobertaModel
),
(
XLMRobertaConfig
,
RobertaModel
),
(
BertConfig
,
BertModel
),
(
OpenAIGPTConfig
,
OpenAIGPTModel
),
(
GPT2Config
,
GPT2Model
),
(
TransfoXLConfig
,
TransfoXLModel
),
(
XLNetConfig
,
XLNetModel
),
(
XLMConfig
,
XLMModel
),
(
CTRLConfig
,
CTRLModel
),
]
)
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
:
OrderedDict
[
Type
[
PretrainedConfig
],
Type
[
PreTrainedModel
]]
=
OrderedDict
(
[
(
DistilBertConfig
,
DistilBertForTokenClassification
),
(
CamembertConfig
,
CamembertForTokenClassification
),
(
RobertaConfig
,
XLMRobertaForTokenClassification
),
(
XLMRobertaConfig
,
RobertaForTokenClassification
),
(
BertConfig
,
BertForTokenClassification
),
(
XLNetConfig
,
XLNetForTokenClassification
),
]
)
class
AutoModel
(
object
):
r
"""
...
...
@@ -183,30 +215,9 @@ class AutoModel(object):
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
model = AutoModel.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')`
"""
if
isinstance
(
config
,
DistilBertConfig
):
return
DistilBertModel
(
config
)
elif
isinstance
(
config
,
RobertaConfig
):
return
RobertaModel
(
config
)
elif
isinstance
(
config
,
BertConfig
):
return
BertModel
(
config
)
elif
isinstance
(
config
,
OpenAIGPTConfig
):
return
OpenAIGPTModel
(
config
)
elif
isinstance
(
config
,
GPT2Config
):
return
GPT2Model
(
config
)
elif
isinstance
(
config
,
TransfoXLConfig
):
return
TransfoXLModel
(
config
)
elif
isinstance
(
config
,
XLNetConfig
):
return
XLNetModel
(
config
)
elif
isinstance
(
config
,
XLMConfig
):
return
XLMModel
(
config
)
elif
isinstance
(
config
,
CTRLConfig
):
return
CTRLModel
(
config
)
elif
isinstance
(
config
,
AlbertConfig
):
return
AlbertModel
(
config
)
elif
isinstance
(
config
,
CamembertConfig
):
return
CamembertModel
(
config
)
elif
isinstance
(
config
,
XLMRobertaConfig
):
return
XLMRobertaModel
(
config
)
for
config_class
,
model_class
in
MODEL_MAPPING
.
items
():
if
isinstance
(
config
,
config_class
):
return
model_class
(
config
)
raise
ValueError
(
"Unrecognized configuration class {}"
.
format
(
config
))
@
classmethod
...
...
@@ -294,32 +305,9 @@ class AutoModel(object):
if
not
isinstance
(
config
,
PretrainedConfig
):
config
=
AutoConfig
.
from_pretrained
(
pretrained_model_name_or_path
,
**
kwargs
)
if
isinstance
(
config
,
T5Config
):
return
T5Model
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
DistilBertConfig
):
return
DistilBertModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
AlbertConfig
):
return
AlbertModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
CamembertConfig
):
return
CamembertModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
XLMRobertaConfig
):
return
XLMRobertaModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
RobertaConfig
):
return
RobertaModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
BertConfig
):
return
BertModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
OpenAIGPTConfig
):
return
OpenAIGPTModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
GPT2Config
):
return
GPT2Model
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
TransfoXLConfig
):
return
TransfoXLModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
XLNetConfig
):
return
XLNetModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
XLMConfig
):
return
XLMModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
elif
isinstance
(
config
,
CTRLConfig
):
return
CTRLModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
for
config_class
,
model_class
in
MODEL_MAPPING
.
items
():
if
isinstance
(
config
,
config_class
):
return
model_class
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
config
=
config
,
**
kwargs
)
raise
ValueError
(
"Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
...
...
templates/adding_a_new_model/configuration_xxx.py
View file @
b803b067
...
...
@@ -58,6 +58,7 @@ class XxxConfig(PretrainedConfig):
layer_norm_eps: The epsilon used by LayerNorm.
"""
pretrained_config_archive_map
=
XXX_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type
=
"xxx"
def
__init__
(
self
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment