"tests/vscode:/vscode.git/clone" did not exist on "7735e0406fa3d39051cfed9921a3ceef06e6c76e"
Unverified Commit b76e6ebd authored by Arthur's avatar Arthur Committed by GitHub
Browse files

remove wrong doc in readme (#22723)

parent 5a71977b
......@@ -42,7 +42,7 @@ model = LlamaForCausalLM.from_pretrained("/output/path")
Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). For the 65B model, it's thus 130GB of RAM needed.
- The LLaMA tokenizer is based on [sentencepiece](https://github.com/google/sentencepiece). One quirk of sentencepiece is that when decoding a sequence, if the first token is the start of the word (e.g. "Banana"), the tokenizer does not prepend the prefix space to the string. To have the tokenizer output the prefix space, set `decode_with_prefix_space=True` in the `LlamaTokenizer` object or in the tokenizer configuration.
- The LLaMA tokenizer is a BPE model based on [sentencepiece](https://github.com/google/sentencepiece). One quirk of sentencepiece is that when decoding a sequence, if the first token is the start of the word (e.g. "Banana"), the tokenizer does not prepend the prefix space to the string.
This model was contributed by [zphang](https://huggingface.co/zphang) with contributions from [BlackSamorez](https://huggingface.co/BlackSamorez). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). The original code of the authors can be found [here](https://github.com/facebookresearch/llama).
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment