Unverified Commit b752ad30 authored by Eduardo Pacheco's avatar Eduardo Pacheco Committed by GitHub
Browse files

Adding grounding dino (#26087)



* Fixed typo when converting weigths to GroundingDINO vision backbone

* Final modifications on modeling

* Removed unnecessary class

* Fixed convert structure

* Added image processing

* make fixup partially completed

* Now text_backbone_config has its own class

* Modified convert script

* Removed unnecessary config attribute

* Added new function to generate sub sentence mask

* Renamed parameters with gamma in the name as it's currently not allowed

* Removed tokenization and image_processing scripts since we'll map from existing models

* Fixed some issues with configuration

* Just some modifications on conversion script

* Other modifications

* Copied deformable detr

* First commit

* Added bert to model

* Bert validated

* Created Text and Fusion layers for Encoder

* Adapted Encoder layer

* Fixed typos

* Adjusted Encoder

* Converted encoder to hf

* Modified Decoder Layer

* Modified main decoder class

* Removed copy comments

* Fixed forward from GroundingDINOModel and GroundingDINODecoder

* Added all necessary layers, configurations and forward logic up to GroundingDINOModel

* Added all layers to convertion

* Fixed outputs for GroundingDINOModel and GroundingDINOForObjectDetection

* Fixed mask input to encoders and fixed nn.MultiheadAttention batch first and attn output

* Fixed forward from GroundingDINOTextEnhancerLayer

* Fixed output bug with GroundingDINODeformableLayer

* Fixed bugs that prevent GroundingDINOForObjectDetection to run forward method

* Fixed attentions to be passed correctly

* Passing temperature arg when creating Sine position embedding

* Removed copy comments

* Added temperature argument for position embedding

* Fixed typo when converting weigths to GroundingDINO vision backbone

* Final modifications on modeling

* Removed unnecessary class

* Fixed convert structure

* Added image processing

* make fixup partially completed

* Now text_backbone_config has its own class

* Modified convert script

* Removed unnecessary config attribute

* Added new function to generate sub sentence mask

* Renamed parameters with gamma in the name as it's currently not allowed

* Removed tokenization and image_processing scripts since we'll map from existing models

* Fixed some issues with configuration

* Just some modifications on conversion script

* Other modifications

* Fix style

* Improve fixup

* Improve conversion script

* Improve conversion script

* Add GroundingDINOProcessor

* More improvements

* Return token type ids

* something

* Fix more tests

* More improvements

* More cleanup

* More improvements

* Fixed tests, improved modeling and config

* More improvements and fixing tests

* Improved tests and modeling

* Improved tests and added image processor

* Improved tests inference

* More improvements

* More test improvements

* Fixed last test

* Improved docstrings and comments

* Fix style

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Better naming

* Better naming

* Added Copied statement

* Added Copied statement

* Moved param init from GroundingDINOBiMultiHeadAttention

* Better naming

* Fixing clamp style

* Better naming

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/configuration_grounding_dino.py
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Improving conversion script

* Improved config

* Improved naming

* Improved naming again

* Improved grouding-dino.md

* Moved grounding dino to multimodal

* Update src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Fixed docstrings and style

* Fix docstrings

* Remove timm attributes

* Reorder imports

* More improvements

* Add Grounding DINO to pipeline

* Remove model from check_repo

* Added grounded post_process to GroundingDINOProcessor

* Fixed style

* Fixed GroundingDINOTextPrenetConfig docstrings

* Aligned inputs.keys() when both image and text are passed with model_input_names

* Added tests for GroundingDINOImageProcessor and GroundingDINOProcessor

* Testing post_process_grounded_object_detection from GroundingDINOProcessor at test_inference_object_detection_head

* Fixed order

* Marked test with require_torch

* Temporarily changed repo_id

* More improvements

* Fix style

* Final improvements

* Improve annotators

* Fix style

* Add is_torch_available

* Remove type hints

* vocab_tokens as one liner

* Removed print statements

* Renamed GroundingDINOTextPrenetConfig to GroundingDINOTextConfig

* remove unnecessary comments

* Removed unnecessary tests on conversion script

* Renamed GroundingDINO to camel case GroundingDino

* Fixed GroundingDinoProcessor docstrings

* loading MSDA kernels in the modeling file

* Fix copies

* Replace nn.multiheadattention

* Replace nn.multiheadattention

* Fixed inputs for GroundingDinoMultiheadAttention & order of modules

* Fixed processing to avoid messing with inputs

* Added more tips for GroundingDino

* Make style

* Chaning name to align with SAM

* Replace final nn.multiheadattention

* Fix model tests

* Update year, remove GenerationTesterMixin

* Address comments

* Address more comments

* Rename TextPrenet to TextModel

* Rename hidden_states

* Address more comments

* Address more comments

* Address comment

* Address more comments

* Address merge

* Address comment

* Address comment

* Address comment

* Make style

* Added layer norm eps to layer norms

* Address more comments

* More fixes

* Fixed equivalence

* Make fixup

* Remove print statements

* Address comments

* Address comments

* Address comments

* Address comments

* Address comments

* Address comments

* Add comment

* Address comment

* Remove overwriting of test

* Fix bbox_embed

* Improve decoder_bbox_embed_share

* Simplify outputs

* Updated post_process_grounded_object_detection

* Renamed sources to feature_maps

* Improved tests for Grounding Dino ImageProcessor and Processor

* Fixed test requirements and imports

* Fixed image_processing

* Fixed processor tests

* Fixed imports for image processing tests

* Fix copies

* Updated modeling

* Fix style

* Moved functions to correct position

* Fixed copy issues

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py
Co-authored-by: default avatarSangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarSangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avatarSangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Keeping consistency custom cuda kernels for MSDA

* Make GroundingDinoProcessor logic clearer

* Updated Grounding DINO checkpoints

* Changed tests to correct structure

* Updated gpu-cpu equivalence test

* fix copies

* Update src/transformers/models/grounding_dino/processing_grounding_dino.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/processing_grounding_dino.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/configuration_grounding_dino.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixed erros and style

* Fix copies

* Removed inheritance from PreTrainedModel from GroundingDinoTextModel

* Fixed GroundingDinoTextModel

* Fixed type of default backbone config

* Fixed missing methods for GroundingDinoTextModel and Added timm support for GroundingDinoConvEncoder

* Addressed comments

* Addressed batched image processing tests

* Addressed zero shot test comment

* Addressed tip comment

* Removed GroundingDinoTextModel from check_repo

* Removed inplace masking

* Addressed comments

* Addressed comments

* Addressed comments

* Fix copies

* Fixing timm test

* Fixed batching equivalence test

* Update docs/source/en/model_doc/grounding-dino.md
Co-authored-by: default avatarTianqi Xu <40522713+dandansamax@users.noreply.github.com>

* Update docs/source/en/model_doc/grounding-dino.md
Co-authored-by: default avatarTianqi Xu <40522713+dandansamax@users.noreply.github.com>

* Update docs/source/en/model_doc/grounding-dino.md
Co-authored-by: default avatarTianqi Xu <40522713+dandansamax@users.noreply.github.com>

* Addressed more comments

* Added a new comment

* Reduced image size

* Addressed more comments

* Nits

* Nits

* Changed the way text_config is initialized

* Update src/transformers/models/grounding_dino/processing_grounding_dino.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------
Co-authored-by: default avatarNiels <niels.rogge1@gmail.com>
Co-authored-by: default avatarRafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: default avatarEduardo Pacheco <eduardo.pacheco@limehome.com>
Co-authored-by: default avatarSangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: default avatarTianqi Xu <40522713+dandansamax@users.noreply.github.com>
parent a5e5c92a
......@@ -115,6 +115,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("gptj", "GPTJModel"),
("gptsan-japanese", "GPTSanJapaneseForConditionalGeneration"),
("graphormer", "GraphormerModel"),
("grounding-dino", "GroundingDinoModel"),
("groupvit", "GroupViTModel"),
("hubert", "HubertModel"),
("ibert", "IBertModel"),
......@@ -753,6 +754,7 @@ MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES = OrderedDict(
MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES = OrderedDict(
[
# Model for Zero Shot Object Detection mapping
("grounding-dino", "GroundingDinoForObjectDetection"),
("owlv2", "Owlv2ForObjectDetection"),
("owlvit", "OwlViTForObjectDetection"),
]
......
......@@ -195,6 +195,7 @@ else:
("gpt_neox_japanese", ("GPTNeoXJapaneseTokenizer", None)),
("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gptsan-japanese", ("GPTSanJapaneseTokenizer", None)),
("grounding-dino", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("groupvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)),
("hubert", ("Wav2Vec2CTCTokenizer", None)),
......
......@@ -710,13 +710,14 @@ class DeformableDetrMultiscaleDeformableAttention(nn.Module):
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
if reference_points.shape[-1] == 2:
num_coordinates = reference_points.shape[-1]
if num_coordinates == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif reference_points.shape[-1] == 4:
elif num_coordinates == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
......@@ -1401,14 +1402,15 @@ class DeformableDetrDecoder(DeformableDetrPreTrainedModel):
intermediate_reference_points = ()
for idx, decoder_layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
num_coordinates = reference_points.shape[-1]
if num_coordinates == 4:
reference_points_input = (
reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None]
)
else:
if reference_points.shape[-1] != 2:
raise ValueError("Reference points' last dimension must be of size 2")
elif reference_points.shape[-1] == 2:
reference_points_input = reference_points[:, :, None] * valid_ratios[:, None]
else:
raise ValueError("Reference points' last dimension must be of size 2")
if output_hidden_states:
all_hidden_states += (hidden_states,)
......@@ -1442,17 +1444,18 @@ class DeformableDetrDecoder(DeformableDetrPreTrainedModel):
# hack implementation for iterative bounding box refinement
if self.bbox_embed is not None:
tmp = self.bbox_embed[idx](hidden_states)
if reference_points.shape[-1] == 4:
num_coordinates = reference_points.shape[-1]
if num_coordinates == 4:
new_reference_points = tmp + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
else:
if reference_points.shape[-1] != 2:
raise ValueError(
f"Reference points' last dimension must be of size 2, but is {reference_points.shape[-1]}"
)
elif num_coordinates == 2:
new_reference_points = tmp
new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
else:
raise ValueError(
f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}"
)
reference_points = new_reference_points.detach()
intermediate += (hidden_states,)
......
......@@ -682,13 +682,14 @@ class DetaMultiscaleDeformableAttention(nn.Module):
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
if reference_points.shape[-1] == 2:
num_coordinates = reference_points.shape[-1]
if num_coordinates == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif reference_points.shape[-1] == 4:
elif num_coordinates == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
......
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_grounding_dino": [
"GROUNDING_DINO_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroundingDinoConfig",
],
"processing_grounding_dino": ["GroundingDinoProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_grounding_dino"] = [
"GROUNDING_DINO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroundingDinoForObjectDetection",
"GroundingDinoModel",
"GroundingDinoPreTrainedModel",
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_grounding_dino"] = ["GroundingDinoImageProcessor"]
if TYPE_CHECKING:
from .configuration_grounding_dino import (
GROUNDING_DINO_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroundingDinoConfig,
)
from .processing_grounding_dino import GroundingDinoProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_grounding_dino import (
GROUNDING_DINO_PRETRAINED_MODEL_ARCHIVE_LIST,
GroundingDinoForObjectDetection,
GroundingDinoModel,
GroundingDinoPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_grounding_dino import GroundingDinoImageProcessor
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Grounding DINO model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
GROUNDING_DINO_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"IDEA-Research/grounding-dino-tiny": "https://huggingface.co/IDEA-Research/grounding-dino-tiny/resolve/main/config.json",
}
class GroundingDinoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GroundingDinoModel`]. It is used to instantiate a
Grounding DINO model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Grounding DINO
[IDEA-Research/grounding-dino-tiny](https://huggingface.co/IDEA-Research/grounding-dino-tiny) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `ResNetConfig()`):
The configuration of the backbone model.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, defaults to `False`):
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
library.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `BertConfig`):
The config object or dictionary of the text backbone.
num_queries (`int`, *optional*, defaults to 900):
Number of object queries, i.e. detection slots. This is the maximal number of objects
[`GroundingDinoModel`] can detect in a single image.
encoder_layers (`int`, *optional*, defaults to 6):
Number of encoder layers.
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_layers (`int`, *optional*, defaults to 6):
Number of decoder layers.
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
decoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
d_model (`int`, *optional*, defaults to 256):
Dimension of the layers.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
auxiliary_loss (`bool`, *optional*, defaults to `False`):
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
num_feature_levels (`int`, *optional*, defaults to 4):
The number of input feature levels.
encoder_n_points (`int`, *optional*, defaults to 4):
The number of sampled keys in each feature level for each attention head in the encoder.
decoder_n_points (`int`, *optional*, defaults to 4):
The number of sampled keys in each feature level for each attention head in the decoder.
two_stage (`bool`, *optional*, defaults to `True`):
Whether to apply a two-stage deformable DETR, where the region proposals are also generated by a variant of
Grounding DINO, which are further fed into the decoder for iterative bounding box refinement.
class_cost (`float`, *optional*, defaults to 1.0):
Relative weight of the classification error in the Hungarian matching cost.
bbox_cost (`float`, *optional*, defaults to 5.0):
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
giou_cost (`float`, *optional*, defaults to 2.0):
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
bbox_loss_coefficient (`float`, *optional*, defaults to 5.0):
Relative weight of the L1 bounding box loss in the object detection loss.
giou_loss_coefficient (`float`, *optional*, defaults to 2.0):
Relative weight of the generalized IoU loss in the object detection loss.
focal_alpha (`float`, *optional*, defaults to 0.25):
Alpha parameter in the focal loss.
disable_custom_kernels (`bool`, *optional*, defaults to `False`):
Disable the use of custom CUDA and CPU kernels. This option is necessary for the ONNX export, as custom
kernels are not supported by PyTorch ONNX export.
max_text_len (`int`, *optional*, defaults to 256):
The maximum length of the text input.
text_enhancer_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the text enhancer.
fusion_droppath (`float`, *optional*, defaults to 0.1):
The droppath ratio for the fusion module.
fusion_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the fusion module.
embedding_init_target (`bool`, *optional*, defaults to `True`):
Whether to initialize the target with Embedding weights.
query_dim (`int`, *optional*, defaults to 4):
The dimension of the query vector.
decoder_bbox_embed_share (`bool`, *optional*, defaults to `True`):
Whether to share the bbox regression head for all decoder layers.
two_stage_bbox_embed_share (`bool`, *optional*, defaults to `False`):
Whether to share the bbox embedding between the two-stage bbox generator and the region proposal
generation.
positional_embedding_temperature (`float`, *optional*, defaults to 20):
The temperature for Sine Positional Embedding that is used together with vision backbone.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
Examples:
```python
>>> from transformers import GroundingDinoConfig, GroundingDinoModel
>>> # Initializing a Grounding DINO IDEA-Research/grounding-dino-tiny style configuration
>>> configuration = GroundingDinoConfig()
>>> # Initializing a model (with random weights) from the IDEA-Research/grounding-dino-tiny style configuration
>>> model = GroundingDinoModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "grounding-dino"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__(
self,
backbone_config=None,
backbone=None,
use_pretrained_backbone=False,
use_timm_backbone=False,
backbone_kwargs=None,
text_config=None,
num_queries=900,
encoder_layers=6,
encoder_ffn_dim=2048,
encoder_attention_heads=8,
decoder_layers=6,
decoder_ffn_dim=2048,
decoder_attention_heads=8,
is_encoder_decoder=True,
activation_function="relu",
d_model=256,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
auxiliary_loss=False,
position_embedding_type="sine",
num_feature_levels=4,
encoder_n_points=4,
decoder_n_points=4,
two_stage=True,
class_cost=1.0,
bbox_cost=5.0,
giou_cost=2.0,
bbox_loss_coefficient=5.0,
giou_loss_coefficient=2.0,
focal_alpha=0.25,
disable_custom_kernels=False,
# other parameters
max_text_len=256,
text_enhancer_dropout=0.0,
fusion_droppath=0.1,
fusion_dropout=0.0,
embedding_init_target=True,
query_dim=4,
decoder_bbox_embed_share=True,
two_stage_bbox_embed_share=False,
positional_embedding_temperature=20,
init_std=0.02,
layer_norm_eps=1e-5,
**kwargs,
):
if not use_timm_backbone and use_pretrained_backbone:
raise ValueError(
"Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`"
)
if backbone_config is not None and backbone is not None:
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
if backbone_config is None and backbone is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.")
backbone_config = CONFIG_MAPPING["swin"](
window_size=7,
image_size=224,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
out_indices=[2, 3, 4],
)
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.pop("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
if text_config is None:
text_config = {}
logger.info("text_config is None. Initializing the text config with default values (`BertConfig`).")
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.backbone_kwargs = backbone_kwargs
self.num_queries = num_queries
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.auxiliary_loss = auxiliary_loss
self.position_embedding_type = position_embedding_type
# deformable attributes
self.num_feature_levels = num_feature_levels
self.encoder_n_points = encoder_n_points
self.decoder_n_points = decoder_n_points
self.two_stage = two_stage
# Hungarian matcher
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
# Loss coefficients
self.bbox_loss_coefficient = bbox_loss_coefficient
self.giou_loss_coefficient = giou_loss_coefficient
self.focal_alpha = focal_alpha
self.disable_custom_kernels = disable_custom_kernels
# Text backbone
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "bert"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["bert"]()
self.text_config = text_config
self.max_text_len = max_text_len
# Text Enhancer
self.text_enhancer_dropout = text_enhancer_dropout
# Fusion
self.fusion_droppath = fusion_droppath
self.fusion_dropout = fusion_dropout
# Others
self.embedding_init_target = embedding_init_target
self.query_dim = query_dim
self.decoder_bbox_embed_share = decoder_bbox_embed_share
self.two_stage_bbox_embed_share = two_stage_bbox_embed_share
if two_stage_bbox_embed_share and not decoder_bbox_embed_share:
raise ValueError("If two_stage_bbox_embed_share is True, decoder_bbox_embed_share must be True.")
self.positional_embedding_temperature = positional_embedding_temperature
self.init_std = init_std
self.layer_norm_eps = layer_norm_eps
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Grounding DINO checkpoints from the original repository.
URL: https://github.com/IDEA-Research/GroundingDINO"""
import argparse
import requests
import torch
from PIL import Image
from torchvision import transforms as T
from transformers import (
AutoTokenizer,
GroundingDinoConfig,
GroundingDinoForObjectDetection,
GroundingDinoImageProcessor,
GroundingDinoProcessor,
SwinConfig,
)
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
def get_grounding_dino_config(model_name):
if "tiny" in model_name:
window_size = 7
embed_dim = 96
depths = (2, 2, 6, 2)
num_heads = (3, 6, 12, 24)
image_size = 224
elif "base" in model_name:
window_size = 12
embed_dim = 128
depths = (2, 2, 18, 2)
num_heads = (4, 8, 16, 32)
image_size = 384
else:
raise ValueError("Model not supported, only supports base and large variants")
backbone_config = SwinConfig(
window_size=window_size,
image_size=image_size,
embed_dim=embed_dim,
depths=depths,
num_heads=num_heads,
out_indices=[2, 3, 4],
)
config = GroundingDinoConfig(backbone_config=backbone_config)
return config
def create_rename_keys(state_dict, config):
rename_keys = []
# fmt: off
########################################## VISION BACKBONE - START
# patch embedding layer
rename_keys.append(("backbone.0.patch_embed.proj.weight",
"model.backbone.conv_encoder.model.embeddings.patch_embeddings.projection.weight"))
rename_keys.append(("backbone.0.patch_embed.proj.bias",
"model.backbone.conv_encoder.model.embeddings.patch_embeddings.projection.bias"))
rename_keys.append(("backbone.0.patch_embed.norm.weight",
"model.backbone.conv_encoder.model.embeddings.norm.weight"))
rename_keys.append(("backbone.0.patch_embed.norm.bias",
"model.backbone.conv_encoder.model.embeddings.norm.bias"))
for layer, depth in enumerate(config.backbone_config.depths):
for block in range(depth):
# layernorms
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm1.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_before.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm1.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_before.bias"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm2.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_after.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm2.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_after.bias"))
# attention
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.attn.relative_position_bias_table",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.relative_position_bias_table"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.attn.proj.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.output.dense.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.attn.proj.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.output.dense.bias"))
# intermediate
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc1.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.intermediate.dense.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc1.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.intermediate.dense.bias"))
# output
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc2.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.output.dense.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc2.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.output.dense.bias"))
# downsample
if layer!=len(config.backbone_config.depths)-1:
rename_keys.append((f"backbone.0.layers.{layer}.downsample.reduction.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.downsample.reduction.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.downsample.norm.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.downsample.norm.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.downsample.norm.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.downsample.norm.bias"))
for out_indice in config.backbone_config.out_indices:
# Grounding DINO implementation of out_indices isn't aligned with transformers
rename_keys.append((f"backbone.0.norm{out_indice-1}.weight",
f"model.backbone.conv_encoder.model.hidden_states_norms.stage{out_indice}.weight"))
rename_keys.append((f"backbone.0.norm{out_indice-1}.bias",
f"model.backbone.conv_encoder.model.hidden_states_norms.stage{out_indice}.bias"))
########################################## VISION BACKBONE - END
########################################## ENCODER - START
deformable_key_mappings = {
'self_attn.sampling_offsets.weight': 'deformable_layer.self_attn.sampling_offsets.weight',
'self_attn.sampling_offsets.bias': 'deformable_layer.self_attn.sampling_offsets.bias',
'self_attn.attention_weights.weight': 'deformable_layer.self_attn.attention_weights.weight',
'self_attn.attention_weights.bias': 'deformable_layer.self_attn.attention_weights.bias',
'self_attn.value_proj.weight': 'deformable_layer.self_attn.value_proj.weight',
'self_attn.value_proj.bias': 'deformable_layer.self_attn.value_proj.bias',
'self_attn.output_proj.weight': 'deformable_layer.self_attn.output_proj.weight',
'self_attn.output_proj.bias': 'deformable_layer.self_attn.output_proj.bias',
'norm1.weight': 'deformable_layer.self_attn_layer_norm.weight',
'norm1.bias': 'deformable_layer.self_attn_layer_norm.bias',
'linear1.weight': 'deformable_layer.fc1.weight',
'linear1.bias': 'deformable_layer.fc1.bias',
'linear2.weight': 'deformable_layer.fc2.weight',
'linear2.bias': 'deformable_layer.fc2.bias',
'norm2.weight': 'deformable_layer.final_layer_norm.weight',
'norm2.bias': 'deformable_layer.final_layer_norm.bias',
}
text_enhancer_key_mappings = {
'self_attn.in_proj_weight': 'text_enhancer_layer.self_attn.in_proj_weight',
'self_attn.in_proj_bias': 'text_enhancer_layer.self_attn.in_proj_bias',
'self_attn.out_proj.weight': 'text_enhancer_layer.self_attn.out_proj.weight',
'self_attn.out_proj.bias': 'text_enhancer_layer.self_attn.out_proj.bias',
'linear1.weight': 'text_enhancer_layer.fc1.weight',
'linear1.bias': 'text_enhancer_layer.fc1.bias',
'linear2.weight': 'text_enhancer_layer.fc2.weight',
'linear2.bias': 'text_enhancer_layer.fc2.bias',
'norm1.weight': 'text_enhancer_layer.layer_norm_before.weight',
'norm1.bias': 'text_enhancer_layer.layer_norm_before.bias',
'norm2.weight': 'text_enhancer_layer.layer_norm_after.weight',
'norm2.bias': 'text_enhancer_layer.layer_norm_after.bias',
}
fusion_key_mappings = {
'gamma_v': 'fusion_layer.vision_param',
'gamma_l': 'fusion_layer.text_param',
'layer_norm_v.weight': 'fusion_layer.layer_norm_vision.weight',
'layer_norm_v.bias': 'fusion_layer.layer_norm_vision.bias',
'layer_norm_l.weight': 'fusion_layer.layer_norm_text.weight',
'layer_norm_l.bias': 'fusion_layer.layer_norm_text.bias',
'attn.v_proj.weight': 'fusion_layer.attn.vision_proj.weight',
'attn.v_proj.bias': 'fusion_layer.attn.vision_proj.bias',
'attn.l_proj.weight': 'fusion_layer.attn.text_proj.weight',
'attn.l_proj.bias': 'fusion_layer.attn.text_proj.bias',
'attn.values_v_proj.weight': 'fusion_layer.attn.values_vision_proj.weight',
'attn.values_v_proj.bias': 'fusion_layer.attn.values_vision_proj.bias',
'attn.values_l_proj.weight': 'fusion_layer.attn.values_text_proj.weight',
'attn.values_l_proj.bias': 'fusion_layer.attn.values_text_proj.bias',
'attn.out_v_proj.weight': 'fusion_layer.attn.out_vision_proj.weight',
'attn.out_v_proj.bias': 'fusion_layer.attn.out_vision_proj.bias',
'attn.out_l_proj.weight': 'fusion_layer.attn.out_text_proj.weight',
'attn.out_l_proj.bias': 'fusion_layer.attn.out_text_proj.bias',
}
for layer in range(config.encoder_layers):
# deformable
for src, dest in deformable_key_mappings.items():
rename_keys.append((f"transformer.encoder.layers.{layer}.{src}",
f"model.encoder.layers.{layer}.{dest}"))
# text enhance
for src, dest in text_enhancer_key_mappings.items():
rename_keys.append((f"transformer.encoder.text_layers.{layer}.{src}",
f"model.encoder.layers.{layer}.{dest}"))
# fusion layers
for src, dest in fusion_key_mappings.items():
rename_keys.append((f"transformer.encoder.fusion_layers.{layer}.{src}",
f"model.encoder.layers.{layer}.{dest}"))
########################################## ENCODER - END
########################################## DECODER - START
key_mappings_decoder = {
'cross_attn.sampling_offsets.weight': 'encoder_attn.sampling_offsets.weight',
'cross_attn.sampling_offsets.bias': 'encoder_attn.sampling_offsets.bias',
'cross_attn.attention_weights.weight': 'encoder_attn.attention_weights.weight',
'cross_attn.attention_weights.bias': 'encoder_attn.attention_weights.bias',
'cross_attn.value_proj.weight': 'encoder_attn.value_proj.weight',
'cross_attn.value_proj.bias': 'encoder_attn.value_proj.bias',
'cross_attn.output_proj.weight': 'encoder_attn.output_proj.weight',
'cross_attn.output_proj.bias': 'encoder_attn.output_proj.bias',
'norm1.weight': 'encoder_attn_layer_norm.weight',
'norm1.bias': 'encoder_attn_layer_norm.bias',
'ca_text.in_proj_weight': 'encoder_attn_text.in_proj_weight',
'ca_text.in_proj_bias': 'encoder_attn_text.in_proj_bias',
'ca_text.out_proj.weight': 'encoder_attn_text.out_proj.weight',
'ca_text.out_proj.bias': 'encoder_attn_text.out_proj.bias',
'catext_norm.weight': 'encoder_attn_text_layer_norm.weight',
'catext_norm.bias': 'encoder_attn_text_layer_norm.bias',
'self_attn.in_proj_weight': 'self_attn.in_proj_weight',
'self_attn.in_proj_bias': 'self_attn.in_proj_bias',
'self_attn.out_proj.weight': 'self_attn.out_proj.weight',
'self_attn.out_proj.bias': 'self_attn.out_proj.bias',
'norm2.weight': 'self_attn_layer_norm.weight',
'norm2.bias': 'self_attn_layer_norm.bias',
'linear1.weight': 'fc1.weight',
'linear1.bias': 'fc1.bias',
'linear2.weight': 'fc2.weight',
'linear2.bias': 'fc2.bias',
'norm3.weight': 'final_layer_norm.weight',
'norm3.bias': 'final_layer_norm.bias',
}
for layer_num in range(config.decoder_layers):
source_prefix_decoder = f'transformer.decoder.layers.{layer_num}.'
target_prefix_decoder = f'model.decoder.layers.{layer_num}.'
for source_name, target_name in key_mappings_decoder.items():
rename_keys.append((source_prefix_decoder + source_name,
target_prefix_decoder + target_name))
########################################## DECODER - END
########################################## Additional - START
for layer_name, params in state_dict.items():
#### TEXT BACKBONE
if "bert" in layer_name:
rename_keys.append((layer_name, layer_name.replace("bert", "model.text_backbone")))
#### INPUT PROJ - PROJECT OUTPUT FEATURES FROM VISION BACKBONE
if "input_proj" in layer_name:
rename_keys.append((layer_name, layer_name.replace("input_proj", "model.input_proj_vision")))
#### INPUT PROJ - PROJECT OUTPUT FEATURES FROM TEXT BACKBONE
if "feat_map" in layer_name:
rename_keys.append((layer_name, layer_name.replace("feat_map", "model.text_projection")))
#### DECODER REFERENCE POINT HEAD
if "transformer.decoder.ref_point_head" in layer_name:
rename_keys.append((layer_name, layer_name.replace("transformer.decoder.ref_point_head",
"model.decoder.reference_points_head")))
#### DECODER BBOX EMBED
if "transformer.decoder.bbox_embed" in layer_name:
rename_keys.append((layer_name, layer_name.replace("transformer.decoder.bbox_embed",
"model.decoder.bbox_embed")))
if "transformer.enc_output" in layer_name:
rename_keys.append((layer_name, layer_name.replace("transformer", "model")))
if "transformer.enc_out_bbox_embed" in layer_name:
rename_keys.append((layer_name, layer_name.replace("transformer.enc_out_bbox_embed",
"model.encoder_output_bbox_embed")))
rename_keys.append(("transformer.level_embed", "model.level_embed"))
rename_keys.append(("transformer.decoder.norm.weight", "model.decoder.layer_norm.weight"))
rename_keys.append(("transformer.decoder.norm.bias", "model.decoder.layer_norm.bias"))
rename_keys.append(("transformer.tgt_embed.weight", "model.query_position_embeddings.weight"))
########################################## Additional - END
# fmt: on
return rename_keys
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v_encoder(state_dict, config):
########################################## VISION BACKBONE - START
embed_dim = config.backbone_config.embed_dim
for layer, depth in enumerate(config.backbone_config.depths):
hidden_size = embed_dim * 2**layer
for block in range(depth):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"backbone.0.layers.{layer}.blocks.{block}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"backbone.0.layers.{layer}.blocks.{block}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.query.weight"
] = in_proj_weight[:hidden_size, :]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.query.bias"
] = in_proj_bias[:hidden_size]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.key.weight"
] = in_proj_weight[hidden_size : hidden_size * 2, :]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.key.bias"
] = in_proj_bias[hidden_size : hidden_size * 2]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.value.weight"
] = in_proj_weight[-hidden_size:, :]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.value.bias"
] = in_proj_bias[-hidden_size:]
########################################## VISION BACKBONE - END
def read_in_q_k_v_text_enhancer(state_dict, config):
hidden_size = config.hidden_size
for idx in range(config.encoder_layers):
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.query.weight"] = in_proj_weight[
:hidden_size, :
]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.query.bias"] = in_proj_bias[:hidden_size]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.key.weight"] = in_proj_weight[
hidden_size : hidden_size * 2, :
]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.key.bias"] = in_proj_bias[
hidden_size : hidden_size * 2
]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.value.weight"] = in_proj_weight[
-hidden_size:, :
]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.value.bias"] = in_proj_bias[
-hidden_size:
]
def read_in_q_k_v_decoder(state_dict, config):
hidden_size = config.hidden_size
for idx in range(config.decoder_layers):
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"model.decoder.layers.{idx}.self_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"model.decoder.layers.{idx}.self_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.decoder.layers.{idx}.self_attn.query.weight"] = in_proj_weight[:hidden_size, :]
state_dict[f"model.decoder.layers.{idx}.self_attn.query.bias"] = in_proj_bias[:hidden_size]
state_dict[f"model.decoder.layers.{idx}.self_attn.key.weight"] = in_proj_weight[
hidden_size : hidden_size * 2, :
]
state_dict[f"model.decoder.layers.{idx}.self_attn.key.bias"] = in_proj_bias[hidden_size : hidden_size * 2]
state_dict[f"model.decoder.layers.{idx}.self_attn.value.weight"] = in_proj_weight[-hidden_size:, :]
state_dict[f"model.decoder.layers.{idx}.self_attn.value.bias"] = in_proj_bias[-hidden_size:]
# read in weights + bias of cross-attention
in_proj_weight = state_dict.pop(f"model.decoder.layers.{idx}.encoder_attn_text.in_proj_weight")
in_proj_bias = state_dict.pop(f"model.decoder.layers.{idx}.encoder_attn_text.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.query.weight"] = in_proj_weight[:hidden_size, :]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.query.bias"] = in_proj_bias[:hidden_size]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.key.weight"] = in_proj_weight[
hidden_size : hidden_size * 2, :
]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.key.bias"] = in_proj_bias[
hidden_size : hidden_size * 2
]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.value.weight"] = in_proj_weight[-hidden_size:, :]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.value.bias"] = in_proj_bias[-hidden_size:]
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
return image
def preprocess_caption(caption: str) -> str:
result = caption.lower().strip()
if result.endswith("."):
return result
return result + "."
@torch.no_grad()
def convert_grounding_dino_checkpoint(args):
model_name = args.model_name
pytorch_dump_folder_path = args.pytorch_dump_folder_path
push_to_hub = args.push_to_hub
verify_logits = args.verify_logits
checkpoint_mapping = {
"grounding-dino-tiny": "https://huggingface.co/ShilongLiu/GroundingDino/resolve/main/groundingdino_swint_ogc.pth",
"grounding-dino-base": "https://huggingface.co/ShilongLiu/GroundingDino/resolve/main/groundingdino_swinb_cogcoor.pth",
}
# Define default GroundingDino configuation
config = get_grounding_dino_config(model_name)
# Load original checkpoint
checkpoint_url = checkpoint_mapping[model_name]
original_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
original_state_dict = {k.replace("module.", ""): v for k, v in original_state_dict.items()}
for name, param in original_state_dict.items():
print(name, param.shape)
# Rename keys
new_state_dict = original_state_dict.copy()
rename_keys = create_rename_keys(original_state_dict, config)
for src, dest in rename_keys:
rename_key(new_state_dict, src, dest)
read_in_q_k_v_encoder(new_state_dict, config)
read_in_q_k_v_text_enhancer(new_state_dict, config)
read_in_q_k_v_decoder(new_state_dict, config)
# Load HF model
model = GroundingDinoForObjectDetection(config)
model.eval()
missing_keys, unexpected_keys = model.load_state_dict(new_state_dict, strict=False)
print("Missing keys:", missing_keys)
print("Unexpected keys:", unexpected_keys)
# Load and process test image
image = prepare_img()
transforms = T.Compose([T.Resize(size=800, max_size=1333), T.ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
original_pixel_values = transforms(image).unsqueeze(0)
image_processor = GroundingDinoImageProcessor()
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
processor = GroundingDinoProcessor(image_processor=image_processor, tokenizer=tokenizer)
text = "a cat"
inputs = processor(images=image, text=preprocess_caption(text), return_tensors="pt")
assert torch.allclose(original_pixel_values, inputs.pixel_values, atol=1e-4)
if verify_logits:
# Running forward
with torch.no_grad():
outputs = model(**inputs)
print(outputs.logits[0, :3, :3])
expected_slice = torch.tensor(
[[-4.8913, -0.1900, -0.2161], [-4.9653, -0.3719, -0.3950], [-5.9599, -3.3765, -3.3104]]
)
assert torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model.push_to_hub(f"EduardoPacheco/{model_name}")
processor.push_to_hub(f"EduardoPacheco/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="grounding-dino-tiny",
type=str,
choices=["grounding-dino-tiny", "grounding-dino-base"],
help="Name of the GroundingDino model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
parser.add_argument(
"--verify_logits", action="store_false", help="Whether or not to verify logits after conversion."
)
args = parser.parse_args()
convert_grounding_dino_checkpoint(args)
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Deformable DETR."""
import io
import pathlib
from collections import defaultdict
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...image_processing_utils import BaseImageProcessor, get_size_dict
from ...image_transforms import (
PaddingMode,
center_to_corners_format,
corners_to_center_format,
id_to_rgb,
pad,
rescale,
resize,
rgb_to_id,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_annotations,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import (
ExplicitEnum,
TensorType,
is_flax_available,
is_jax_tensor,
is_scipy_available,
is_tf_available,
is_tf_tensor,
is_torch_available,
is_torch_tensor,
is_vision_available,
logging,
)
if is_torch_available():
import torch
from torch import nn
if is_vision_available():
import PIL
if is_scipy_available():
import scipy.special
import scipy.stats
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
AnnotationType = Dict[str, Union[int, str, List[Dict]]]
class AnnotationFormat(ExplicitEnum):
COCO_DETECTION = "coco_detection"
COCO_PANOPTIC = "coco_panoptic"
SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
# Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio
def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size.
Args:
image_size (`Tuple[int, int]`):
The input image size.
size (`int`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
"""
height, width = image_size
if max_size is not None:
min_original_size = float(min((height, width)))
max_original_size = float(max((height, width)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (height <= width and height == size) or (width <= height and width == size):
return height, width
if width < height:
ow = size
oh = int(size * height / width)
else:
oh = size
ow = int(size * width / height)
return (oh, ow)
# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
def get_resize_output_image_size(
input_image: np.ndarray,
size: Union[int, Tuple[int, int], List[int]],
max_size: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size. If the desired output size
is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
image size is computed by keeping the aspect ratio of the input image size.
Args:
input_image (`np.ndarray`):
The image to resize.
size (`int` or `Tuple[int, int]` or `List[int]`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image, input_data_format)
if isinstance(size, (list, tuple)):
return size
return get_size_with_aspect_ratio(image_size, size, max_size)
# Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn
def get_numpy_to_framework_fn(arr) -> Callable:
"""
Returns a function that converts a numpy array to the framework of the input array.
Args:
arr (`np.ndarray`): The array to convert.
"""
if isinstance(arr, np.ndarray):
return np.array
if is_tf_available() and is_tf_tensor(arr):
import tensorflow as tf
return tf.convert_to_tensor
if is_torch_available() and is_torch_tensor(arr):
import torch
return torch.tensor
if is_flax_available() and is_jax_tensor(arr):
import jax.numpy as jnp
return jnp.array
raise ValueError(f"Cannot convert arrays of type {type(arr)}")
# Copied from transformers.models.detr.image_processing_detr.safe_squeeze
def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
"""
Squeezes an array, but only if the axis specified has dim 1.
"""
if axis is None:
return arr.squeeze()
try:
return arr.squeeze(axis=axis)
except ValueError:
return arr
# Copied from transformers.models.detr.image_processing_detr.normalize_annotation
def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict:
image_height, image_width = image_size
norm_annotation = {}
for key, value in annotation.items():
if key == "boxes":
boxes = value
boxes = corners_to_center_format(boxes)
boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32)
norm_annotation[key] = boxes
else:
norm_annotation[key] = value
return norm_annotation
# Copied from transformers.models.detr.image_processing_detr.max_across_indices
def max_across_indices(values: Iterable[Any]) -> List[Any]:
"""
Return the maximum value across all indices of an iterable of values.
"""
return [max(values_i) for values_i in zip(*values)]
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
Args:
image (`np.ndarray`):
Image to make the pixel mask for.
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
# Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask
def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
"""
Convert a COCO polygon annotation to a mask.
Args:
segmentations (`List[List[float]]`):
List of polygons, each polygon represented by a list of x-y coordinates.
height (`int`):
Height of the mask.
width (`int`):
Width of the mask.
"""
try:
from pycocotools import mask as coco_mask
except ImportError:
raise ImportError("Pycocotools is not installed in your environment.")
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = np.asarray(mask, dtype=np.uint8)
mask = np.any(mask, axis=2)
masks.append(mask)
if masks:
masks = np.stack(masks, axis=0)
else:
masks = np.zeros((0, height, width), dtype=np.uint8)
return masks
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->GroundingDino
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by GroundingDino.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
# Get all COCO annotations for the given image.
annotations = target["annotations"]
annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]
classes = [obj["category_id"] for obj in annotations]
classes = np.asarray(classes, dtype=np.int64)
# for conversion to coco api
area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)
boxes = [obj["bbox"] for obj in annotations]
# guard against no boxes via resizing
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
new_target = {}
new_target["image_id"] = image_id
new_target["class_labels"] = classes[keep]
new_target["boxes"] = boxes[keep]
new_target["area"] = area[keep]
new_target["iscrowd"] = iscrowd[keep]
new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)
if annotations and "keypoints" in annotations[0]:
keypoints = [obj["keypoints"] for obj in annotations]
# Converting the filtered keypoints list to a numpy array
keypoints = np.asarray(keypoints, dtype=np.float32)
# Apply the keep mask here to filter the relevant annotations
keypoints = keypoints[keep]
num_keypoints = keypoints.shape[0]
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
new_target["keypoints"] = keypoints
if return_segmentation_masks:
segmentation_masks = [obj["segmentation"] for obj in annotations]
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
new_target["masks"] = masks[keep]
return new_target
# Copied from transformers.models.detr.image_processing_detr.masks_to_boxes
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
"""
Compute the bounding boxes around the provided panoptic segmentation masks.
Args:
masks: masks in format `[number_masks, height, width]` where N is the number of masks
Returns:
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
"""
if masks.size == 0:
return np.zeros((0, 4))
h, w = masks.shape[-2:]
y = np.arange(0, h, dtype=np.float32)
x = np.arange(0, w, dtype=np.float32)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = np.meshgrid(y, x, indexing="ij")
x_mask = masks * np.expand_dims(x, axis=0)
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
x_min = x.filled(fill_value=1e8)
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
y_mask = masks * np.expand_dims(y, axis=0)
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
y_min = y.filled(fill_value=1e8)
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
return np.stack([x_min, y_min, x_max, y_max], 1)
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->GroundingDino
def prepare_coco_panoptic_annotation(
image: np.ndarray,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for GroundingDino.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)
if "segments_info" in target:
masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
masks = rgb_to_id(masks)
ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
masks = masks == ids[:, None, None]
masks = masks.astype(np.uint8)
if return_masks:
new_target["masks"] = masks
new_target["boxes"] = masks_to_boxes(masks)
new_target["class_labels"] = np.array(
[segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
)
new_target["iscrowd"] = np.asarray(
[segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
)
new_target["area"] = np.asarray(
[segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
)
return new_target
# Copied from transformers.models.detr.image_processing_detr.get_segmentation_image
def get_segmentation_image(
masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False
):
h, w = input_size
final_h, final_w = target_size
m_id = scipy.special.softmax(masks.transpose(0, 1), -1)
if m_id.shape[-1] == 0:
# We didn't detect any mask :(
m_id = np.zeros((h, w), dtype=np.int64)
else:
m_id = m_id.argmax(-1).reshape(h, w)
if deduplicate:
# Merge the masks corresponding to the same stuff class
for equiv in stuff_equiv_classes.values():
for eq_id in equiv:
m_id[m_id == eq_id] = equiv[0]
seg_img = id_to_rgb(m_id)
seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST)
return seg_img
# Copied from transformers.models.detr.image_processing_detr.get_mask_area
def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray:
final_h, final_w = target_size
np_seg_img = seg_img.astype(np.uint8)
np_seg_img = np_seg_img.reshape(final_h, final_w, 3)
m_id = rgb_to_id(np_seg_img)
area = [(m_id == i).sum() for i in range(n_classes)]
return area
# Copied from transformers.models.detr.image_processing_detr.score_labels_from_class_probabilities
def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
probs = scipy.special.softmax(logits, axis=-1)
labels = probs.argmax(-1, keepdims=True)
scores = np.take_along_axis(probs, labels, axis=-1)
scores, labels = scores.squeeze(-1), labels.squeeze(-1)
return scores, labels
# Copied from transformers.models.detr.image_processing_detr.post_process_panoptic_sample
def post_process_panoptic_sample(
out_logits: np.ndarray,
masks: np.ndarray,
boxes: np.ndarray,
processed_size: Tuple[int, int],
target_size: Tuple[int, int],
is_thing_map: Dict,
threshold=0.85,
) -> Dict:
"""
Converts the output of [`DetrForSegmentation`] into panoptic segmentation predictions for a single sample.
Args:
out_logits (`torch.Tensor`):
The logits for this sample.
masks (`torch.Tensor`):
The predicted segmentation masks for this sample.
boxes (`torch.Tensor`):
The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y,
width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding).
processed_size (`Tuple[int, int]`):
The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size
after data augmentation but before batching.
target_size (`Tuple[int, int]`):
The target size of the image, `(height, width)` corresponding to the requested final size of the
prediction.
is_thing_map (`Dict`):
A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not.
threshold (`float`, *optional*, defaults to 0.85):
The threshold used to binarize the segmentation masks.
"""
# we filter empty queries and detection below threshold
scores, labels = score_labels_from_class_probabilities(out_logits)
keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_boxes = center_to_corners_format(boxes[keep])
if len(cur_boxes) != len(cur_classes):
raise ValueError("Not as many boxes as there are classes")
cur_masks = masks[keep]
cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR)
cur_masks = safe_squeeze(cur_masks, 1)
b, h, w = cur_masks.shape
# It may be that we have several predicted masks for the same stuff class.
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
cur_masks = cur_masks.reshape(b, -1)
stuff_equiv_classes = defaultdict(list)
for k, label in enumerate(cur_classes):
if not is_thing_map[label]:
stuff_equiv_classes[label].append(k)
seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True)
area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores))
# We filter out any mask that is too small
if cur_classes.size() > 0:
# We know filter empty masks as long as we find some
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
while filtered_small.any():
cur_masks = cur_masks[~filtered_small]
cur_scores = cur_scores[~filtered_small]
cur_classes = cur_classes[~filtered_small]
seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True)
area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores))
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
else:
cur_classes = np.ones((1, 1), dtype=np.int64)
segments_info = [
{"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a}
for i, (cat, a) in enumerate(zip(cur_classes, area))
]
del cur_classes
with io.BytesIO() as out:
PIL.Image.fromarray(seg_img).save(out, format="PNG")
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
return predictions
# Copied from transformers.models.detr.image_processing_detr.resize_annotation
def resize_annotation(
annotation: Dict[str, Any],
orig_size: Tuple[int, int],
target_size: Tuple[int, int],
threshold: float = 0.5,
resample: PILImageResampling = PILImageResampling.NEAREST,
):
"""
Resizes an annotation to a target size.
Args:
annotation (`Dict[str, Any]`):
The annotation dictionary.
orig_size (`Tuple[int, int]`):
The original size of the input image.
target_size (`Tuple[int, int]`):
The target size of the image, as returned by the preprocessing `resize` step.
threshold (`float`, *optional*, defaults to 0.5):
The threshold used to binarize the segmentation masks.
resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
The resampling filter to use when resizing the masks.
"""
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
ratio_height, ratio_width = ratios
new_annotation = {}
new_annotation["size"] = target_size
for key, value in annotation.items():
if key == "boxes":
boxes = value
scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
new_annotation["boxes"] = scaled_boxes
elif key == "area":
area = value
scaled_area = area * (ratio_width * ratio_height)
new_annotation["area"] = scaled_area
elif key == "masks":
masks = value[:, None]
masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
masks = masks.astype(np.float32)
masks = masks[:, 0] > threshold
new_annotation["masks"] = masks
elif key == "size":
new_annotation["size"] = target_size
else:
new_annotation[key] = value
return new_annotation
# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle
def binary_mask_to_rle(mask):
"""
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
mask (`torch.Tensor` or `numpy.array`):
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
segment_id or class_id.
Returns:
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
format.
"""
if is_torch_tensor(mask):
mask = mask.numpy()
pixels = mask.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return list(runs)
# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle
def convert_segmentation_to_rle(segmentation):
"""
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
segmentation (`torch.Tensor` or `numpy.array`):
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
Returns:
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
"""
segment_ids = torch.unique(segmentation)
run_length_encodings = []
for idx in segment_ids:
mask = torch.where(segmentation == idx, 1, 0)
rle = binary_mask_to_rle(mask)
run_length_encodings.append(rle)
return run_length_encodings
# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
"""
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
`labels`.
Args:
masks (`torch.Tensor`):
A tensor of shape `(num_queries, height, width)`.
scores (`torch.Tensor`):
A tensor of shape `(num_queries)`.
labels (`torch.Tensor`):
A tensor of shape `(num_queries)`.
object_mask_threshold (`float`):
A number between 0 and 1 used to binarize the masks.
Raises:
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
Returns:
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
< `object_mask_threshold`.
"""
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
raise ValueError("mask, scores and labels must have the same shape!")
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
return masks[to_keep], scores[to_keep], labels[to_keep]
# Copied from transformers.models.detr.image_processing_detr.check_segment_validity
def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
# Get the mask associated with the k class
mask_k = mask_labels == k
mask_k_area = mask_k.sum()
# Compute the area of all the stuff in query k
original_area = (mask_probs[k] >= mask_threshold).sum()
mask_exists = mask_k_area > 0 and original_area > 0
# Eliminate disconnected tiny segments
if mask_exists:
area_ratio = mask_k_area / original_area
if not area_ratio.item() > overlap_mask_area_threshold:
mask_exists = False
return mask_exists, mask_k
# Copied from transformers.models.detr.image_processing_detr.compute_segments
def compute_segments(
mask_probs,
pred_scores,
pred_labels,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None,
target_size: Tuple[int, int] = None,
):
height = mask_probs.shape[1] if target_size is None else target_size[0]
width = mask_probs.shape[2] if target_size is None else target_size[1]
segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
segments: List[Dict] = []
if target_size is not None:
mask_probs = nn.functional.interpolate(
mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
)[0]
current_segment_id = 0
# Weigh each mask by its prediction score
mask_probs *= pred_scores.view(-1, 1, 1)
mask_labels = mask_probs.argmax(0) # [height, width]
# Keep track of instances of each class
stuff_memory_list: Dict[str, int] = {}
for k in range(pred_labels.shape[0]):
pred_class = pred_labels[k].item()
should_fuse = pred_class in label_ids_to_fuse
# Check if mask exists and large enough to be a segment
mask_exists, mask_k = check_segment_validity(
mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
)
if mask_exists:
if pred_class in stuff_memory_list:
current_segment_id = stuff_memory_list[pred_class]
else:
current_segment_id += 1
# Add current object segment to final segmentation map
segmentation[mask_k] = current_segment_id
segment_score = round(pred_scores[k].item(), 6)
segments.append(
{
"id": current_segment_id,
"label_id": pred_class,
"was_fused": should_fuse,
"score": segment_score,
}
)
if should_fuse:
stuff_memory_list[pred_class] = current_segment_id
return segmentation, segments
class GroundingDinoImageProcessor(BaseImageProcessor):
r"""
Constructs a Grounding DINO image processor.
Args:
format (`str`, *optional*, defaults to `AnnotationFormat.COCO_DETECTION`):
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
do_resize (`bool`, *optional*, defaults to `True`):
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be
overridden by the `do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in
the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method. Controls whether to normalize the image. Can be overridden by the `do_normalize`
parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_annotations (`bool`, *optional*, defaults to `True`):
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `True`):
Controls whether to pad the image to the largest image in a batch and create a pixel mask. Can be
overridden by the `do_pad` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values", "pixel_mask"]
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.__init__
def __init__(
self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Union[float, List[float]] = None,
image_std: Union[float, List[float]] = None,
do_convert_annotations: Optional[bool] = None,
do_pad: bool = True,
**kwargs,
) -> None:
if "pad_and_return_pixel_mask" in kwargs:
do_pad = kwargs.pop("pad_and_return_pixel_mask")
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None if size is None else 1333
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
size = get_size_dict(size, max_size=max_size, default_to_square=False)
# Backwards compatibility
if do_convert_annotations is None:
do_convert_annotations = do_normalize
super().__init__(**kwargs)
self.format = format
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.do_convert_annotations = do_convert_annotations
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_pad = do_pad
self._valid_processor_keys = [
"images",
"annotations",
"return_segmentation_masks",
"masks_path",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"do_convert_annotations",
"image_mean",
"image_std",
"do_pad",
"format",
"return_tensors",
"data_format",
"input_data_format",
]
@classmethod
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->GroundingDino
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `GroundingDinoImageProcessor.from_pretrained(checkpoint, size=600,
max_size=800)`
"""
image_processor_dict = image_processor_dict.copy()
if "max_size" in kwargs:
image_processor_dict["max_size"] = kwargs.pop("max_size")
if "pad_and_return_pixel_mask" in kwargs:
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
return super().from_dict(image_processor_dict, **kwargs)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->GroundingDino
def prepare_annotation(
self,
image: np.ndarray,
target: Dict,
format: Optional[AnnotationFormat] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into GroundingDino model.
"""
format = format if format is not None else self.format
if format == AnnotationFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotationFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
return target
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
logger.warning_once(
"The `prepare` method is deprecated and will be removed in a v4.33. "
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
"does not return the image anymore.",
)
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
return image, target
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
def convert_coco_poly_to_mask(self, *args, **kwargs):
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
return convert_coco_poly_to_mask(*args, **kwargs)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection
def prepare_coco_detection(self, *args, **kwargs):
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
return prepare_coco_detection_annotation(*args, **kwargs)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
def prepare_coco_panoptic(self, *args, **kwargs):
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
return prepare_coco_panoptic_annotation(*args, **kwargs)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or
`height` and `width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
)
return image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
def resize_annotation(
self,
annotation,
orig_size,
size,
resample: PILImageResampling = PILImageResampling.NEAREST,
) -> Dict:
"""
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
to this number.
"""
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
"""
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
`[center_x, center_y, width, height]` format and from absolute to relative pixel values.
"""
return normalize_annotation(annotation, image_size=image_size)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image
def _update_annotation_for_padded_image(
self,
annotation: Dict,
input_image_size: Tuple[int, int],
output_image_size: Tuple[int, int],
padding,
update_bboxes,
) -> Dict:
"""
Update the annotation for a padded image.
"""
new_annotation = {}
new_annotation["size"] = output_image_size
for key, value in annotation.items():
if key == "masks":
masks = value
masks = pad(
masks,
padding,
mode=PaddingMode.CONSTANT,
constant_values=0,
input_data_format=ChannelDimension.FIRST,
)
masks = safe_squeeze(masks, 1)
new_annotation["masks"] = masks
elif key == "boxes" and update_bboxes:
boxes = value
boxes *= np.asarray(
[
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
]
)
new_annotation["boxes"] = boxes
elif key == "size":
new_annotation["size"] = output_image_size
else:
new_annotation[key] = value
return new_annotation
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
def _pad_image(
self,
image: np.ndarray,
output_size: Tuple[int, int],
annotation: Optional[Dict[str, Any]] = None,
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
if annotation is not None:
annotation = self._update_annotation_for_padded_image(
annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
)
return padded_image, annotation
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad
def pad(
self,
images: List[np.ndarray],
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
constant_values: Union[float, Iterable[float]] = 0,
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
in the batch and optionally returns their corresponding pixel mask.
Args:
images (List[`np.ndarray`]):
Images to pad.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
Annotations to transform according to the padding that is applied to the images.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
return_pixel_mask (`bool`, *optional*, defaults to `True`):
Whether to return a pixel mask.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
update_bboxes (`bool`, *optional*, defaults to `True`):
Whether to update the bounding boxes in the annotations to match the padded images. If the
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
format, the bounding boxes will not be updated.
"""
pad_size = get_max_height_width(images, input_data_format=input_data_format)
annotation_list = annotations if annotations is not None else [None] * len(images)
padded_images = []
padded_annotations = []
for image, annotation in zip(images, annotation_list):
padded_image, padded_annotation = self._pad_image(
image,
pad_size,
annotation,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
update_bboxes=update_bboxes,
)
padded_images.append(padded_image)
padded_annotations.append(padded_annotation)
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
]
return encoded_inputs
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.preprocess
def preprocess(
self,
images: ImageInput,
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample=None, # PILImageResampling
do_rescale: Optional[bool] = None,
rescale_factor: Optional[Union[int, float]] = None,
do_normalize: Optional[bool] = None,
do_convert_annotations: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
format: Optional[Union[str, AnnotationFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or a batch of images so that it can be used by the model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
Whether to return segmentation masks.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
do_resize (`bool`, *optional*, defaults to self.do_resize):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to self.size):
Size of the image after resizing.
resample (`PILImageResampling`, *optional*, defaults to self.resample):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
Rescale factor to use when rescaling the image.
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
Whether to normalize the image.
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
Whether to convert the annotations to the format expected by the model. Converts the bounding
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
and in relative coordinates.
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
Mean to use when normalizing the image.
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
Standard deviation to use when normalizing the image.
do_pad (`bool`, *optional*, defaults to self.do_pad):
Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
"use `do_pad` instead."
)
do_pad = kwargs.pop("pad_and_return_pixel_mask")
max_size = None
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` argument is deprecated and will be removed in a future version, use"
" `size['longest_edge']` instead."
)
size = kwargs.pop("max_size")
do_resize = self.do_resize if do_resize is None else do_resize
size = self.size if size is None else size
size = get_size_dict(size=size, max_size=max_size, default_to_square=False)
resample = self.resample if resample is None else resample
do_rescale = self.do_rescale if do_rescale is None else do_rescale
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
do_normalize = self.do_normalize if do_normalize is None else do_normalize
image_mean = self.image_mean if image_mean is None else image_mean
image_std = self.image_std if image_std is None else image_std
do_convert_annotations = (
self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
)
do_pad = self.do_pad if do_pad is None else do_pad
format = self.format if format is None else format
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if annotations is not None and isinstance(annotations, dict):
annotations = [annotations]
if annotations is not None and len(images) != len(annotations):
raise ValueError(
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
)
format = AnnotationFormat(format)
if annotations is not None:
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
if (
masks_path is not None
and format == AnnotationFormat.COCO_PANOPTIC
and not isinstance(masks_path, (pathlib.Path, str))
):
raise ValueError(
"The path to the directory containing the mask PNG files should be provided as a"
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
)
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
images = prepared_images
annotations = prepared_annotations
del prepared_images, prepared_annotations
# transformations
if do_resize:
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if do_convert_annotations and annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
encoded_inputs = self.pad(
images,
annotations=annotations,
return_pixel_mask=True,
data_format=data_format,
input_data_format=input_data_format,
update_bboxes=do_convert_annotations,
return_tensors=return_tensors,
)
else:
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
]
return encoded_inputs
# Copied from transformers.models.owlvit.image_processing_owlvit.OwlViTImageProcessor.post_process_object_detection with OwlViT->GroundingDino
def post_process_object_detection(
self, outputs, threshold: float = 0.1, target_sizes: Union[TensorType, List[Tuple]] = None
):
"""
Converts the raw output of [`GroundingDinoForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`GroundingDinoObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
# TODO: (amy) add support for other frameworks
logits, boxes = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
probs = torch.max(logits, dim=-1)
scores = torch.sigmoid(probs.values)
labels = probs.indices
# Convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(boxes)
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({"scores": score, "labels": label, "boxes": box})
return results
# coding=utf-8
# Copyright 2024 IDEA Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Grounding DINO model."""
import copy
import math
import os
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from ...activations import ACT2FN
from ...file_utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_scipy_available,
is_timm_available,
is_torch_cuda_available,
is_vision_available,
replace_return_docstrings,
requires_backends,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import meshgrid
from ...utils import is_accelerate_available, is_ninja_available, logging
from ...utils.backbone_utils import load_backbone
from ..auto import AutoModel
from .configuration_grounding_dino import GroundingDinoConfig
if is_vision_available():
from transformers.image_transforms import center_to_corners_format
if is_accelerate_available():
from accelerate import PartialState
from accelerate.utils import reduce
if is_scipy_available():
from scipy.optimize import linear_sum_assignment
if is_timm_available():
from timm import create_model
logger = logging.get_logger(__name__)
MultiScaleDeformableAttention = None
# Copied from models.deformable_detr.load_cuda_kernels
def load_cuda_kernels():
from torch.utils.cpp_extension import load
global MultiScaleDeformableAttention
root = Path(__file__).resolve().parent.parent.parent / "kernels" / "grounding_dino"
src_files = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu", "ms_deform_attn_cpu.cpp"),
os.path.join("cuda", "ms_deform_attn_cuda.cu"),
]
]
MultiScaleDeformableAttention = load(
"MultiScaleDeformableAttention",
src_files,
with_cuda=True,
extra_include_paths=[str(root)],
extra_cflags=["-DWITH_CUDA=1"],
extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
],
)
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.MultiScaleDeformableAttentionFunction
class MultiScaleDeformableAttentionFunction(Function):
@staticmethod
def forward(
context,
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
im2col_step,
):
context.im2col_step = im2col_step
output = MultiScaleDeformableAttention.ms_deform_attn_forward(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
context.im2col_step,
)
context.save_for_backward(
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights
)
return output
@staticmethod
@once_differentiable
def backward(context, grad_output):
(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
) = context.saved_tensors
grad_value, grad_sampling_loc, grad_attn_weight = MultiScaleDeformableAttention.ms_deform_attn_backward(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
grad_output,
context.im2col_step,
)
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "GroundingDinoConfig"
_CHECKPOINT_FOR_DOC = "IDEA-Research/grounding-dino-tiny"
GROUNDING_DINO_PRETRAINED_MODEL_ARCHIVE_LIST = [
"IDEA-Research/grounding-dino-tiny",
# See all Grounding DINO models at https://huggingface.co/models?filter=grounding-dino
]
@dataclass
class GroundingDinoDecoderOutput(ModelOutput):
"""
Base class for outputs of the GroundingDinoDecoder. This class adds two attributes to
BaseModelOutputWithCrossAttentions, namely:
- a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
- a stacked tensor of intermediate reference points.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
"""
last_hidden_state: torch.FloatTensor = None
intermediate_hidden_states: torch.FloatTensor = None
intermediate_reference_points: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class GroundingDinoEncoderOutput(ModelOutput):
"""
Base class for outputs of the GroundingDinoEncoder. This class extends BaseModelOutput, due to:
- vision and text last hidden states
- vision and text intermediate hidden states
Args:
last_hidden_state_vision (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the vision encoder.
last_hidden_state_text (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the text encoder.
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the vision embeddings + one for the output of each
layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision encoder at the
output of each layer plus the initial embedding outputs.
text_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the text embeddings + one for the output of each layer)
of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the text encoder at the output of
each layer plus the initial embedding outputs.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the text-vision attention, vision-text attention, text-enhancer (self-attention) and
multi-scale deformable attention heads.
"""
last_hidden_state_vision: torch.FloatTensor = None
last_hidden_state_text: torch.FloatTensor = None
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
text_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class GroundingDinoModelOutput(ModelOutput):
"""
Base class for outputs of the Grounding DINO encoder-decoder model.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
encoder_last_hidden_state_vision (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_last_hidden_state_text (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the vision embeddings + one for the output of each
layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision encoder at the
output of each layer plus the initial embedding outputs.
encoder_text_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the text embeddings + one for the output of each layer)
of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the text encoder at the output of
each layer plus the initial embedding outputs.
encoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the text-vision attention, vision-text attention, text-enhancer (self-attention) and
multi-scale deformable attention heads. attention softmax, used to compute the weighted average in the
bi-attention heads.
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.two_stage=True`):
Predicted bounding boxes scores where the top `config.num_queries` scoring bounding boxes are picked as
region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and
background).
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.two_stage=True`):
Logits of predicted bounding boxes coordinates in the first stage.
"""
last_hidden_state: torch.FloatTensor = None
init_reference_points: torch.FloatTensor = None
intermediate_hidden_states: torch.FloatTensor = None
intermediate_reference_points: torch.FloatTensor = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
encoder_last_hidden_state_vision: Optional[torch.FloatTensor] = None
encoder_last_hidden_state_text: Optional[torch.FloatTensor] = None
encoder_vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_text_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
enc_outputs_class: Optional[torch.FloatTensor] = None
enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
@dataclass
class GroundingDinoObjectDetectionOutput(ModelOutput):
"""
Output type of [`GroundingDinoForObjectDetection`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~GroundingDinoProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
auxiliary_outputs (`List[Dict]`, *optional*):
Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
encoder_last_hidden_state_vision (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_last_hidden_state_text (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the vision embeddings + one for the output of each
layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision encoder at the
output of each layer plus the initial embedding outputs.
encoder_text_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the text embeddings + one for the output of each layer)
of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the text encoder at the output of
each layer plus the initial embedding outputs.
encoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the text-vision attention, vision-text attention, text-enhancer (self-attention) and
multi-scale deformable attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
Stacked intermediate hidden states (output of each layer of the decoder).
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
Stacked intermediate reference points (reference points of each layer of the decoder).
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Initial reference points sent through the Transformer decoder.
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.two_stage=True`):
Predicted bounding boxes scores where the top `config.num_queries` scoring bounding boxes are picked as
region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and
background).
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.two_stage=True`):
Logits of predicted bounding boxes coordinates in the first stage.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
pred_boxes: torch.FloatTensor = None
auxiliary_outputs: Optional[List[Dict]] = None
last_hidden_state: Optional[torch.FloatTensor] = None
init_reference_points: Optional[torch.FloatTensor] = None
intermediate_hidden_states: Optional[torch.FloatTensor] = None
intermediate_reference_points: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
encoder_last_hidden_state_vision: Optional[torch.FloatTensor] = None
encoder_last_hidden_state_text: Optional[torch.FloatTensor] = None
encoder_vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_text_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
enc_outputs_class: Optional[torch.FloatTensor] = None
enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
# Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->GroundingDino
class GroundingDinoFrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
torchvision.models.resnet[18,34,50,101] produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it user-friendly
weight = self.weight.reshape(1, -1, 1, 1)
bias = self.bias.reshape(1, -1, 1, 1)
running_var = self.running_var.reshape(1, -1, 1, 1)
running_mean = self.running_mean.reshape(1, -1, 1, 1)
epsilon = 1e-5
scale = weight * (running_var + epsilon).rsqrt()
bias = bias - running_mean * scale
return x * scale + bias
# Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->GroundingDino
def replace_batch_norm(model):
r"""
Recursively replace all `torch.nn.BatchNorm2d` with `GroundingDinoFrozenBatchNorm2d`.
Args:
model (torch.nn.Module):
input model
"""
for name, module in model.named_children():
if isinstance(module, nn.BatchNorm2d):
new_module = GroundingDinoFrozenBatchNorm2d(module.num_features)
if not module.weight.device == torch.device("meta"):
new_module.weight.data.copy_(module.weight)
new_module.bias.data.copy_(module.bias)
new_module.running_mean.data.copy_(module.running_mean)
new_module.running_var.data.copy_(module.running_var)
model._modules[name] = new_module
if len(list(module.children())) > 0:
replace_batch_norm(module)
class GroundingDinoConvEncoder(nn.Module):
"""
Convolutional backbone, using either the AutoBackbone API or one from the timm library.
nn.BatchNorm2d layers are replaced by GroundingDinoFrozenBatchNorm2d as defined above.
"""
def __init__(self, config):
super().__init__()
self.config = config
if config.use_timm_backbone:
requires_backends(self, ["timm"])
backbone = create_model(
config.backbone,
pretrained=config.use_pretrained_backbone,
features_only=True,
**config.backbone_kwargs,
)
else:
backbone = load_backbone(config)
# replace batch norm by frozen batch norm
with torch.no_grad():
replace_batch_norm(backbone)
self.model = backbone
self.intermediate_channel_sizes = (
self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
)
backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type
if "resnet" in backbone_model_type:
for name, parameter in self.model.named_parameters():
if config.use_timm_backbone:
if "layer2" not in name and "layer3" not in name and "layer4" not in name:
parameter.requires_grad_(False)
else:
if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
parameter.requires_grad_(False)
# Copied from transformers.models.detr.modeling_detr.DetrConvEncoder.forward with Detr->GroundingDino
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
# send pixel_values through the model to get list of feature maps
features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps
out = []
for feature_map in features:
# downsample pixel_mask to match shape of corresponding feature_map
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
out.append((feature_map, mask))
return out
# Copied from transformers.models.detr.modeling_detr.DetrConvModel with Detr->GroundingDino
class GroundingDinoConvModel(nn.Module):
"""
This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
"""
def __init__(self, conv_encoder, position_embedding):
super().__init__()
self.conv_encoder = conv_encoder
self.position_embedding = position_embedding
def forward(self, pixel_values, pixel_mask):
# send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
out = self.conv_encoder(pixel_values, pixel_mask)
pos = []
for feature_map, mask in out:
# position encoding
pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))
return out, pos
class GroundingDinoSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(self, config):
super().__init__()
self.embedding_dim = config.d_model // 2
self.temperature = config.positional_embedding_temperature
self.scale = 2 * math.pi
def forward(self, pixel_values, pixel_mask):
y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.embedding_dim, dtype=torch.float32, device=pixel_values.device)
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
class GroundingDinoLearnedPositionEmbedding(nn.Module):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, config):
super().__init__()
embedding_dim = config.d_model // 2
self.row_embeddings = nn.Embedding(50, embedding_dim)
self.column_embeddings = nn.Embedding(50, embedding_dim)
def forward(self, pixel_values, pixel_mask=None):
height, width = pixel_values.shape[-2:]
width_values = torch.arange(width, device=pixel_values.device)
height_values = torch.arange(height, device=pixel_values.device)
x_emb = self.column_embeddings(width_values)
y_emb = self.row_embeddings(height_values)
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
return pos
def build_position_encoding(config):
if config.position_embedding_type == "sine":
position_embedding = GroundingDinoSinePositionEmbedding(config)
elif config.position_embedding_type == "learned":
position_embedding = GroundingDinoLearnedPositionEmbedding(config)
else:
raise ValueError(f"Not supported {config.position_embedding_type}")
return position_embedding
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention
def multi_scale_deformable_attention(
value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor
) -> Tensor:
batch_size, _, num_heads, hidden_dim = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level_id, (height, width) in enumerate(value_spatial_shapes):
# batch_size, height*width, num_heads, hidden_dim
# -> batch_size, height*width, num_heads*hidden_dim
# -> batch_size, num_heads*hidden_dim, height*width
# -> batch_size*num_heads, hidden_dim, height, width
value_l_ = (
value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
)
# batch_size, num_queries, num_heads, num_points, 2
# -> batch_size, num_heads, num_queries, num_points, 2
# -> batch_size*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
# batch_size*num_heads, hidden_dim, num_queries, num_points
sampling_value_l_ = nn.functional.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
sampling_value_list.append(sampling_value_l_)
# (batch_size, num_queries, num_heads, num_levels, num_points)
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
batch_size * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(batch_size, num_heads * hidden_dim, num_queries)
)
return output.transpose(1, 2).contiguous()
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention with DeformableDetr->GroundingDino, Deformable DETR->Grounding DINO
class GroundingDinoMultiscaleDeformableAttention(nn.Module):
"""
Multiscale deformable attention as proposed in Deformable DETR.
"""
def __init__(self, config: GroundingDinoConfig, num_heads: int, n_points: int):
super().__init__()
kernel_loaded = MultiScaleDeformableAttention is not None
if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
try:
load_cuda_kernels()
except Exception as e:
logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")
if config.d_model % num_heads != 0:
raise ValueError(
f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
)
dim_per_head = config.d_model // num_heads
# check if dim_per_head is power of 2
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
warnings.warn(
"You'd better set embed_dim (d_model) in GroundingDinoMultiscaleDeformableAttention to make the"
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
" implementation."
)
self.im2col_step = 64
self.d_model = config.d_model
self.n_levels = config.num_feature_levels
self.n_heads = num_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
self.value_proj = nn.Linear(config.d_model, config.d_model)
self.output_proj = nn.Linear(config.d_model, config.d_model)
self.disable_custom_kernels = config.disable_custom_kernels
self._reset_parameters()
def _reset_parameters(self):
nn.init.constant_(self.sampling_offsets.weight.data, 0.0)
default_dtype = torch.get_default_dtype()
thetas = torch.arange(self.n_heads, dtype=torch.int64).to(default_dtype) * (2.0 * math.pi / self.n_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(self.n_heads, 1, 1, 2)
.repeat(1, self.n_levels, self.n_points, 1)
)
for i in range(self.n_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
nn.init.constant_(self.attention_weights.weight.data, 0.0)
nn.init.constant_(self.attention_weights.bias.data, 0.0)
nn.init.xavier_uniform_(self.value_proj.weight.data)
nn.init.constant_(self.value_proj.bias.data, 0.0)
nn.init.xavier_uniform_(self.output_proj.weight.data)
nn.init.constant_(self.output_proj.bias.data, 0.0)
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
# we invert the attention_mask
value = value.masked_fill(~attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = F.softmax(attention_weights, -1).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
num_coordinates = reference_points.shape[-1]
if num_coordinates == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif num_coordinates == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
if self.disable_custom_kernels:
# PyTorch implementation
output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
else:
try:
# custom kernel
output = MultiScaleDeformableAttentionFunction.apply(
value,
spatial_shapes,
level_start_index,
sampling_locations,
attention_weights,
self.im2col_step,
)
except Exception:
# PyTorch implementation
output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
output = self.output_proj(output)
return output, attention_weights
class GroundingDinoTextEnhancerLayer(nn.Module):
"""Vanilla Transformer with text embeddings as input"""
def __init__(self, config):
super().__init__()
self.self_attn = GroundingDinoMultiheadAttention(
config, num_attention_heads=config.encoder_attention_heads // 2
)
# Implementation of Feedforward model
self.fc1 = nn.Linear(config.d_model, config.encoder_ffn_dim // 2)
self.fc2 = nn.Linear(config.encoder_ffn_dim // 2, config.d_model)
self.layer_norm_before = nn.LayerNorm(config.d_model, config.layer_norm_eps)
self.layer_norm_after = nn.LayerNorm(config.d_model, config.layer_norm_eps)
self.activation = ACT2FN[config.activation_function]
self.num_heads = config.encoder_attention_heads // 2
self.dropout = config.text_enhancer_dropout
def with_pos_embed(self, hidden_state: Tensor, position_embeddings: Optional[Tensor]):
return hidden_state if position_embeddings is None else hidden_state + position_embeddings
def forward(
self,
hidden_states: torch.FloatTensor,
attention_masks: Optional[torch.BoolTensor] = None,
position_embeddings: Optional[torch.FloatTensor] = None,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
"""Text self-attention to enhance projection of text features generated by
the text encoder (AutoModel based on text_config) within GroundingDinoEncoderLayer
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_dim)`):
Text features generated by the text encoder.
attention_masks (`torch.BoolTensor`, *optional*):
Attention mask for text self-attention. False for real tokens and True for padding tokens.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings to be added to the hidden states.
Returns:
`tuple(torch.FloatTensor)` comprising two elements:
- **hidden_states** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) --
Output of the text self-attention layer.
- **attention_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, sequence_length,
sequence_length)`) --
Attention weights of the text self-attention layer.
"""
# repeat attn mask
if attention_masks.dim() == 3 and attention_masks.shape[0] == hidden_states.shape[0]:
# batch_size, num_queries, num_keys
attention_masks = attention_masks[:, None, :, :]
attention_masks = attention_masks.repeat(1, self.num_heads, 1, 1)
dtype = torch.float16
attention_masks = attention_masks.to(dtype=dtype) # fp16 compatibility
attention_masks = (1.0 - attention_masks) * torch.finfo(dtype).min
queries = keys = self.with_pos_embed(hidden_states, position_embeddings)
attention_output, attention_weights = self.self_attn(
queries=queries,
keys=keys,
values=hidden_states,
attention_mask=attention_masks,
output_attentions=True,
)
attention_output = nn.functional.dropout(attention_output, p=self.dropout, training=self.training)
hidden_states = hidden_states + attention_output
hidden_states = self.layer_norm_before(hidden_states)
residual = hidden_states
hidden_states = self.activation(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = hidden_states + residual
hidden_states = self.layer_norm_after(hidden_states)
return hidden_states, attention_weights
class GroundingDinoBiMultiHeadAttention(nn.Module):
def __init__(self, config):
super().__init__()
vision_dim = text_dim = config.d_model
embed_dim = config.encoder_ffn_dim // 2
num_heads = config.encoder_attention_heads // 2
dropout = config.fusion_dropout
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.vision_dim = vision_dim
self.text_dim = text_dim
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"`embed_dim` must be divisible by `num_heads` (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
)
self.scale = self.head_dim ** (-0.5)
self.dropout = dropout
self.vision_proj = nn.Linear(self.vision_dim, self.embed_dim)
self.text_proj = nn.Linear(self.text_dim, self.embed_dim)
self.values_vision_proj = nn.Linear(self.vision_dim, self.embed_dim)
self.values_text_proj = nn.Linear(self.text_dim, self.embed_dim)
self.out_vision_proj = nn.Linear(self.embed_dim, self.vision_dim)
self.out_text_proj = nn.Linear(self.embed_dim, self.text_dim)
def _reshape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
vision_features: torch.FloatTensor,
text_features: torch.FloatTensor,
vision_attention_mask: Optional[torch.BoolTensor] = None,
text_attention_mask: Optional[torch.BoolTensor] = None,
) -> Tuple[Tuple[torch.FloatTensor, torch.FloatTensor], Tuple[torch.FloatTensor, torch.FloatTensor]]:
"""Image-to-text and text-to-image cross-attention
Args:
vision_features (`torch.FloatTensor` of shape `(batch_size, vision_sequence_length, hidden_dim)`):
Projected flattened image features generated by the vision backbone.
text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_dim)`):
Projected text features generated by the text encoder.
vision_attention_mask (`torch.BoolTensor`, **optional**):
Attention mask for image-to-text cross-attention. False for real tokens and True for padding tokens.
text_attention_mask (`torch.BoolTensor`, **optional**):
Attention mask for text-to-image cross-attention. False for real tokens and True for padding tokens.
Returns:
`tuple(tuple(torch.FloatTensor), tuple(torch.FloatTensor))` where each inner tuple comprises an attention
output and weights:
- **vision_attn_output** (`torch.FloatTensor` of shape `(batch_size, vision_sequence_length, hidden_din)`)
--
Output of the image-to-text cross-attention layer.
- **vision_attn_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, vision_sequence_length,
vision_sequence_length)`) --
Attention weights of the image-to-text cross-attention layer.
- **text_attn_output** (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_dim)`) --
Output of the text-to-image cross-attention layer.
- **text_attn_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, text_sequence_length,
text_sequence_length)`) --
Attention weights of the text-to-image cross-attention layer.
"""
batch_size, tgt_len, _ = vision_features.size()
vision_query_states = self.vision_proj(vision_features) * self.scale
vision_query_states = self._reshape(vision_query_states, tgt_len, batch_size)
text_key_states = self.text_proj(text_features)
text_key_states = self._reshape(text_key_states, -1, batch_size)
vision_value_states = self.values_vision_proj(vision_features)
vision_value_states = self._reshape(vision_value_states, -1, batch_size)
text_value_states = self.values_text_proj(text_features)
text_value_states = self._reshape(text_value_states, -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
vision_query_states = vision_query_states.view(*proj_shape)
text_key_states = text_key_states.view(*proj_shape)
vision_value_states = vision_value_states.view(*proj_shape)
text_value_states = text_value_states.view(*proj_shape)
src_len = text_key_states.size(1)
attn_weights = torch.bmm(vision_query_states, text_key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt
if attn_weights.size() != (batch_size * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
)
attn_weights = attn_weights - attn_weights.max()
# Do not increase -50000/50000, data type half has quite limited range
attn_weights = torch.clamp(attn_weights, min=-50000, max=50000)
attn_weights_transposed = attn_weights.transpose(1, 2)
text_attn_weights = attn_weights_transposed - torch.max(attn_weights_transposed, dim=-1, keepdim=True)[0]
# Do not increase -50000/50000, data type half has quite limited range
text_attn_weights = torch.clamp(text_attn_weights, min=-50000, max=50000)
# mask vision for language
if vision_attention_mask is not None:
vision_attention_mask = (
vision_attention_mask[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
)
text_attn_weights.masked_fill_(vision_attention_mask, float("-inf"))
text_attn_weights = text_attn_weights.softmax(dim=-1)
# mask language for vision
if text_attention_mask is not None:
text_attention_mask = text_attention_mask[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
attn_weights.masked_fill_(text_attention_mask, float("-inf"))
vision_attn_weights = attn_weights.softmax(dim=-1)
vision_attn_probs = F.dropout(vision_attn_weights, p=self.dropout, training=self.training)
text_attn_probs = F.dropout(text_attn_weights, p=self.dropout, training=self.training)
vision_attn_output = torch.bmm(vision_attn_probs, text_value_states)
text_attn_output = torch.bmm(text_attn_probs, vision_value_states)
if vision_attn_output.size() != (batch_size * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`vision_attn_output` should be of size {(batch_size, self.num_heads, tgt_len, self.head_dim)}, but is {vision_attn_output.size()}"
)
if text_attn_output.size() != (batch_size * self.num_heads, src_len, self.head_dim):
raise ValueError(
f"`text_attn_output` should be of size {(batch_size, self.num_heads, src_len, self.head_dim)}, but is {text_attn_output.size()}"
)
vision_attn_output = vision_attn_output.view(batch_size, self.num_heads, tgt_len, self.head_dim)
vision_attn_output = vision_attn_output.transpose(1, 2)
vision_attn_output = vision_attn_output.reshape(batch_size, tgt_len, self.embed_dim)
text_attn_output = text_attn_output.view(batch_size, self.num_heads, src_len, self.head_dim)
text_attn_output = text_attn_output.transpose(1, 2)
text_attn_output = text_attn_output.reshape(batch_size, src_len, self.embed_dim)
vision_attn_output = self.out_vision_proj(vision_attn_output)
text_attn_output = self.out_text_proj(text_attn_output)
return (vision_attn_output, vision_attn_weights), (text_attn_output, text_attn_weights)
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->GroundingDino
class GroundingDinoDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class GroundingDinoFusionLayer(nn.Module):
def __init__(self, config):
super().__init__()
drop_path = config.fusion_droppath
# pre layer norm
self.layer_norm_vision = nn.LayerNorm(config.d_model, config.layer_norm_eps)
self.layer_norm_text = nn.LayerNorm(config.d_model, config.layer_norm_eps)
self.attn = GroundingDinoBiMultiHeadAttention(config)
# add layer scale for training stability
self.drop_path = GroundingDinoDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
init_values = 1e-4
self.vision_param = nn.Parameter(init_values * torch.ones((config.d_model)), requires_grad=True)
self.text_param = nn.Parameter(init_values * torch.ones((config.d_model)), requires_grad=True)
def forward(
self,
vision_features: torch.FloatTensor,
text_features: torch.FloatTensor,
attention_mask_vision: Optional[torch.BoolTensor] = None,
attention_mask_text: Optional[torch.BoolTensor] = None,
) -> Tuple[Tuple[torch.FloatTensor, torch.FloatTensor], Tuple[torch.FloatTensor, torch.FloatTensor]]:
"""Image and text features fusion
Args:
vision_features (`torch.FloatTensor` of shape `(batch_size, vision_sequence_length, hidden_dim)`):
Projected flattened image features generated by the vision backbone.
text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_dim)`):
Projected text features generated by the text encoder.
attention_mask_vision (`torch.BoolTensor`, **optional**):
Attention mask for image-to-text cross-attention. False for real tokens and True for padding tokens.
attention_mask_text (`torch.BoolTensor`, **optional**):
Attention mask for text-to-image cross-attention. False for real tokens and True for padding tokens.
Returns:
`tuple(tuple(torch.FloatTensor), tuple(torch.FloatTensor))` where each inner tuple comprises an enhanced
feature and attention output and weights:
- **vision_features** (`torch.FloatTensor` of shape `(batch_size, vision_sequence_length, vision_dim)`) --
Updated vision features with attention output from image-to-text cross-attention layer.
- **vision_attn_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, vision_sequence_length,
vision_sequence_length)`) --
Attention weights of the image-to-text cross-attention layer.
- **text_features** (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, text_dim)`) --
Updated text features with attention output from text-to-image cross-attention layer.
- **text_attn_weights** (`torch.FloatTensor` of shape `(batch_size, num_heads, text_sequence_length,
text_sequence_length)`) --
Attention weights of the text-to-image cross-attention layer.
"""
vision_features = self.layer_norm_vision(vision_features)
text_features = self.layer_norm_text(text_features)
(delta_v, vision_attn), (delta_t, text_attn) = self.attn(
vision_features,
text_features,
vision_attention_mask=attention_mask_vision,
text_attention_mask=attention_mask_text,
)
vision_features = vision_features + self.drop_path(self.vision_param * delta_v)
text_features = text_features + self.drop_path(self.text_param * delta_t)
return (vision_features, vision_attn), (text_features, text_attn)
class GroundingDinoDeformableLayer(nn.Module):
def __init__(self, config: GroundingDinoConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = GroundingDinoMultiscaleDeformableAttention(
config, num_heads=config.encoder_attention_heads, n_points=config.encoder_n_points
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Input to the layer.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Attention mask.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings, to be added to `hidden_states`.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes (`torch.LongTensor`, *optional*):
Spatial shapes of the backbone feature maps.
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
return hidden_states, attn_weights
# Based on https://github.com/IDEA-Research/GroundingDINO/blob/2b62f419c292ca9c518daae55512fabc3fead4a4/groundingdino/models/GroundingDINO/utils.py#L24
def get_sine_pos_embed(
pos_tensor: torch.Tensor, num_pos_feats: int = 128, temperature: int = 10000, exchange_xy: bool = True
) -> Tensor:
"""
Generate sine position embeddings from a position tensor.
Args:
pos_tensor (torch.Tensor):
Tensor containing positions. Shape: [..., n].
num_pos_feats (`int`, *optional*, defaults to 128):
Projected shape for each float in the tensor.
temperature (`int`, *optional*, defaults to 10000):
Temperature in the sine/cosine function.
exchange_xy (`bool`, *optional*, defaults to `True`):
Exchange pos x and pos y. For example, input tensor is [x,y], the results will be [pos(y), pos(x)].
Returns:
position_embeddings (torch.Tensor): shape: [..., n * hidden_size].
"""
scale = 2 * math.pi
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
def sine_func(x: torch.Tensor):
sin_x = x * scale / dim_t
sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2)
return sin_x
pos_tensor = pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)
position_embeddings = [sine_func(x) for x in pos_tensor]
if exchange_xy:
position_embeddings[0], position_embeddings[1] = position_embeddings[1], position_embeddings[0]
position_embeddings = torch.cat(position_embeddings, dim=-1)
return position_embeddings
class GroundingDinoEncoderLayer(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.d_model = config.d_model
self.text_enhancer_layer = GroundingDinoTextEnhancerLayer(config)
self.fusion_layer = GroundingDinoFusionLayer(config)
self.deformable_layer = GroundingDinoDeformableLayer(config)
def get_text_position_embeddings(
self,
text_features: Tensor,
text_position_embedding: Optional[torch.Tensor],
text_position_ids: Optional[torch.Tensor],
) -> Tensor:
batch_size, seq_length, _ = text_features.shape
if text_position_embedding is None and text_position_ids is None:
text_position_embedding = torch.arange(seq_length, device=text_features.device)
text_position_embedding = text_position_embedding.float()
text_position_embedding = text_position_embedding.unsqueeze(0).unsqueeze(-1)
text_position_embedding = text_position_embedding.repeat(batch_size, 1, 1)
text_position_embedding = get_sine_pos_embed(
text_position_embedding, num_pos_feats=self.d_model, exchange_xy=False
)
if text_position_ids is not None:
text_position_embedding = get_sine_pos_embed(
text_position_ids[..., None], num_pos_feats=self.d_model, exchange_xy=False
)
return text_position_embedding
def forward(
self,
vision_features: Tensor,
vision_position_embedding: Tensor,
spatial_shapes: Tensor,
level_start_index: Tensor,
key_padding_mask: Tensor,
reference_points: Tensor,
text_features: Optional[Tensor] = None,
text_attention_mask: Optional[Tensor] = None,
text_position_embedding: Optional[Tensor] = None,
text_self_attention_masks: Optional[Tensor] = None,
text_position_ids: Optional[Tensor] = None,
):
text_position_embedding = self.get_text_position_embeddings(
text_features, text_position_embedding, text_position_ids
)
(vision_features, vision_fused_attn), (text_features, text_fused_attn) = self.fusion_layer(
vision_features=vision_features,
text_features=text_features,
attention_mask_vision=key_padding_mask,
attention_mask_text=text_attention_mask,
)
(text_features, text_enhanced_attn) = self.text_enhancer_layer(
hidden_states=text_features,
attention_masks=~text_self_attention_masks, # note we use ~ for mask here
position_embeddings=(text_position_embedding if text_position_embedding is not None else None),
)
(vision_features, vision_deformable_attn) = self.deformable_layer(
hidden_states=vision_features,
attention_mask=~key_padding_mask,
position_embeddings=vision_position_embedding,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
)
return (
(vision_features, text_features),
(vision_fused_attn, text_fused_attn, text_enhanced_attn, vision_deformable_attn),
)
class GroundingDinoMultiheadAttention(nn.Module):
"""Equivalent implementation of nn.MultiheadAttention with `batch_first=True`."""
def __init__(self, config, num_attention_heads=None):
super().__init__()
if config.hidden_size % num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({num_attention_heads})"
)
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(config.hidden_size / num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.attention_dropout)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
queries: torch.Tensor,
keys: torch.Tensor,
values: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
query_layer = self.transpose_for_scores(self.query(queries))
key_layer = self.transpose_for_scores(self.key(keys))
value_layer = self.transpose_for_scores(self.value(values))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in GroundingDinoModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
context_layer = self.out_proj(context_layer)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class GroundingDinoDecoderLayer(nn.Module):
def __init__(self, config: GroundingDinoConfig):
super().__init__()
self.embed_dim = config.d_model
# self-attention
self.self_attn = GroundingDinoMultiheadAttention(config, num_attention_heads=config.decoder_attention_heads)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
# cross-attention text
self.encoder_attn_text = GroundingDinoMultiheadAttention(
config, num_attention_heads=config.decoder_attention_heads
)
self.encoder_attn_text_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
# cross-attention
self.encoder_attn = GroundingDinoMultiscaleDeformableAttention(
config,
num_heads=config.decoder_attention_heads,
n_points=config.decoder_n_points,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
# feedforward neural networks
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, config.layer_norm_eps)
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
vision_encoder_hidden_states: Optional[torch.Tensor] = None,
vision_encoder_attention_mask: Optional[torch.Tensor] = None,
text_encoder_hidden_states: Optional[torch.Tensor] = None,
text_encoder_attention_mask: Optional[torch.Tensor] = None,
self_attn_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
residual = hidden_states
# Self Attention
queries = keys = self.with_pos_embed(hidden_states, position_embeddings)
hidden_states, self_attn_weights = self.self_attn(
queries=queries,
keys=keys,
values=hidden_states,
attention_mask=self_attn_mask,
output_attentions=True,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
second_residual = hidden_states
# Cross-Attention Text
queries = self.with_pos_embed(hidden_states, position_embeddings)
hidden_states, text_cross_attn_weights = self.encoder_attn_text(
queries=queries,
keys=text_encoder_hidden_states,
values=text_encoder_hidden_states,
# attention_mask=text_encoder_attention_mask, # TODO fix cross-attention mask here
output_attentions=True,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = second_residual + hidden_states
hidden_states = self.encoder_attn_text_layer_norm(hidden_states)
third_residual = hidden_states
# Cross-Attention
cross_attn_weights = None
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
attention_mask=vision_encoder_attention_mask,
encoder_hidden_states=vision_encoder_hidden_states,
encoder_attention_mask=vision_encoder_attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = third_residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, text_cross_attn_weights, cross_attn_weights)
return outputs
class GroundingDinoContrastiveEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.max_text_len = config.max_text_len
def forward(
self,
vision_hidden_state: torch.FloatTensor,
text_hidden_state: torch.FloatTensor,
text_token_mask: torch.BoolTensor,
) -> torch.FloatTensor:
output = vision_hidden_state @ text_hidden_state.transpose(-1, -2)
output = output.masked_fill(~text_token_mask[:, None, :], float("-inf"))
# padding to max_text_len
new_output = torch.full((*output.shape[:-1], self.max_text_len), float("-inf"), device=output.device)
new_output[..., : output.shape[-1]] = output
return new_output
class GroundingDinoPreTrainedModel(PreTrainedModel):
config_class = GroundingDinoConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, GroundingDinoLearnedPositionEmbedding):
nn.init.uniform_(module.row_embeddings.weight)
nn.init.uniform_(module.column_embeddings.weight)
elif isinstance(module, GroundingDinoMultiscaleDeformableAttention):
module._reset_parameters()
elif isinstance(module, GroundingDinoBiMultiHeadAttention):
nn.init.xavier_uniform_(module.vision_proj.weight)
module.vision_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(module.text_proj.weight)
module.text_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(module.values_vision_proj.weight)
module.values_vision_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(module.values_text_proj.weight)
module.values_text_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(module.out_vision_proj.weight)
module.out_vision_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(module.out_text_proj.weight)
module.out_text_proj.bias.data.fill_(0)
elif isinstance(module, (GroundingDinoEncoderLayer, GroundingDinoDecoderLayer)):
for p in module.parameters():
if p.dim() > 1:
nn.init.normal_(p, mean=0.0, std=std)
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, GroundingDinoMLPPredictionHead):
nn.init.constant_(module.layers[-1].weight.data, 0)
nn.init.constant_(module.layers[-1].bias.data, 0)
if hasattr(module, "reference_points") and not self.config.two_stage:
nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
nn.init.constant_(module.reference_points.bias.data, 0.0)
if hasattr(module, "level_embed"):
nn.init.normal_(module.level_embed)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, GroundingDinoDecoder):
module.gradient_checkpointing = value
GROUNDING_DINO_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GroundingDinoConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GROUNDING_DINO_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it.
Pixel values can be obtained using [`AutoImageProcessor`]. See [`GroundingDinoImageProcessor.__call__`] for
details.
input_ids (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`GroundingDinoTokenizer.__call__`] for details.
token_type_ids (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`: 0 corresponds to a `sentence A` token, 1 corresponds to a `sentence B` token
[What are token type IDs?](../glossary#token-type-ids)
attention_mask (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are real (i.e. **not masked**),
- 0 for tokens that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state_vision`, *optional*: `last_hidden_state_text`, *optional*:
`vision_hidden_states`, *optional*: `text_hidden_states`, *optional*: `attentions`)
`last_hidden_state_vision` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
decoder.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
class GroundingDinoEncoder(GroundingDinoPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
[`GroundingDinoEncoderLayer`].
The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers.
Args:
config: GroundingDinoConfig
"""
def __init__(self, config: GroundingDinoConfig):
super().__init__(config)
self.dropout = config.dropout
self.layers = nn.ModuleList([GroundingDinoEncoderLayer(config) for _ in range(config.encoder_layers)])
# Initialize weights and apply final processing
self.post_init()
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
"""
Get reference points for each feature map.
Args:
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Valid ratios of each feature map.
device (`torch.device`):
Device on which to create the tensors.
Returns:
`torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
"""
reference_points_list = []
for level, (height, width) in enumerate(spatial_shapes):
ref_y, ref_x = meshgrid(
torch.linspace(0.5, height - 0.5, height, dtype=torch.float32, device=device),
torch.linspace(0.5, width - 0.5, width, dtype=torch.float32, device=device),
indexing="ij",
)
# TODO: valid_ratios could be useless here. check https://github.com/fundamentalvision/Deformable-DETR/issues/36
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, level, 1] * height)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, level, 0] * width)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(
self,
vision_features: Tensor,
vision_attention_mask: Tensor,
vision_position_embedding: Tensor,
spatial_shapes: Tensor,
level_start_index: Tensor,
valid_ratios=None,
text_features: Optional[Tensor] = None,
text_attention_mask: Optional[Tensor] = None,
text_position_embedding: Optional[Tensor] = None,
text_self_attention_masks: Optional[Tensor] = None,
text_position_ids: Optional[Tensor] = None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
vision_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
vision_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 0 for pixel features that are real (i.e. **not masked**),
- 1 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
vision_position_embedding (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Position embeddings that are added to the queries and keys in each self-attention layer.
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
Starting index of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Ratio of valid area in each feature level.
text_features (`torch.FloatTensor` of shape `(batch_size, text_seq_len, hidden_size)`):
Flattened text features that are passed to the encoder.
text_attention_mask (`torch.Tensor` of shape `(batch_size, text_seq_len)`, *optional*):
Mask to avoid performing attention on padding text features. Mask values selected in `[0, 1]`:
- 0 for text features that are real (i.e. **not masked**),
- 1 for text features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
text_position_embedding (`torch.FloatTensor` of shape `(batch_size, text_seq_len)`):
Position embeddings that are added to the queries and keys in each self-attention layer.
text_self_attention_masks (`torch.BoolTensor` of shape `(batch_size, text_seq_len, text_seq_len)`):
Masks to avoid performing attention between padding text features. Mask values selected in `[0, 1]`:
- 1 for text features that are real (i.e. **not masked**),
- 0 for text features that are padding (i.e. **masked**).
text_position_ids (`torch.LongTensor` of shape `(batch_size, num_queries)`):
Position ids for text features.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=vision_features.device)
encoder_vision_states = () if output_hidden_states else None
encoder_text_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
all_attn_fused_text = () if output_attentions else None
all_attn_fused_vision = () if output_attentions else None
all_attn_enhanced_text = () if output_attentions else None
all_attn_deformable = () if output_attentions else None
for i, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_vision_states += (vision_features,)
encoder_text_states += (text_features,)
(vision_features, text_features), attentions = encoder_layer(
vision_features=vision_features,
vision_position_embedding=vision_position_embedding,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
key_padding_mask=vision_attention_mask,
reference_points=reference_points,
text_features=text_features,
text_attention_mask=text_attention_mask,
text_position_embedding=text_position_embedding,
text_self_attention_masks=text_self_attention_masks,
text_position_ids=text_position_ids,
)
if output_attentions:
all_attn_fused_vision += (attentions[0],)
all_attn_fused_text += (attentions[1],)
all_attn_enhanced_text += (attentions[2],)
all_attn_deformable += (attentions[3],)
if output_hidden_states:
encoder_vision_states += (vision_features,)
encoder_text_states += (text_features,)
if output_attentions:
all_attns = (all_attn_fused_vision, all_attn_fused_text, all_attn_enhanced_text, all_attn_deformable)
if not return_dict:
enc_outputs = [vision_features, text_features, encoder_vision_states, encoder_text_states, all_attns]
return tuple(v for v in enc_outputs if v is not None)
return GroundingDinoEncoderOutput(
last_hidden_state_vision=vision_features,
last_hidden_state_text=text_features,
vision_hidden_states=encoder_vision_states,
text_hidden_states=encoder_text_states,
attentions=all_attns,
)
class GroundingDinoDecoder(GroundingDinoPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`GroundingDinoDecoderLayer`].
The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
Some tweaks for Grounding DINO:
- `position_embeddings`, `reference_points`, `spatial_shapes` and `valid_ratios` are added to the forward pass.
- it also returns a stack of intermediate outputs and reference points from all decoding layers.
Args:
config: GroundingDinoConfig
"""
def __init__(self, config: GroundingDinoConfig):
super().__init__(config)
self.dropout = config.dropout
self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
self.layers = nn.ModuleList([GroundingDinoDecoderLayer(config) for _ in range(config.decoder_layers)])
self.reference_points_head = GroundingDinoMLPPredictionHead(
config.query_dim // 2 * config.d_model, config.d_model, config.d_model, 2
)
self.gradient_checkpointing = False
# hack implementation for iterative bounding box refinement as in two-stage Deformable DETR
self.bbox_embed = None
self.class_embed = None
self.query_scale = None
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds,
vision_encoder_hidden_states,
vision_encoder_attention_mask=None,
text_encoder_hidden_states=None,
text_encoder_attention_mask=None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
valid_ratios=None,
self_attn_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
The query embeddings that are passed into the decoder.
vision_encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Last hidden state from encoder related to vision feature map.
vision_encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
text_encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, text_seq_len, hidden_size)`):
Last hidden state from encoder related to text features.
text_encoder_attention_mask (`torch.Tensor` of shape `(batch_size, text_seq_len)`, *optional*):
Mask to avoid performing attention on padding text features. Mask values selected in `[0, 1]`:
- 0 for text features that are real (i.e. **not masked**),
- 1 for text features that are padding (i.e. **masked**).
reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of the feature maps.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
Indexes for the start of each feature level. In range `[0, sequence_length]`.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*):
Ratio of valid area in each feature level.
self_attn_mask (`torch.BoolTensor` of shape `(batch_size, text_seq_len)`):
Masks to avoid performing self-attention between vision hidden state. Mask values selected in `[0, 1]`:
- 1 for queries that are real (i.e. **not masked**),
- 0 for queries that are padding (i.e. **masked**).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_attns = () if output_attentions else None
all_cross_attns_vision = () if (output_attentions and vision_encoder_hidden_states is not None) else None
all_cross_attns_text = () if (output_attentions and text_encoder_hidden_states is not None) else None
intermediate = ()
intermediate_reference_points = ()
for idx, decoder_layer in enumerate(self.layers):
num_coordinates = reference_points.shape[-1]
if num_coordinates == 4:
reference_points_input = (
reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None]
)
elif num_coordinates == 2:
reference_points_input = reference_points[:, :, None] * valid_ratios[:, None]
else:
raise ValueError("Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
query_pos = get_sine_pos_embed(reference_points_input[:, :, 0, :], num_pos_feats=self.config.d_model // 2)
query_pos = self.reference_points_head(query_pos)
# In original implementation they apply layer norm before outputting intermediate hidden states
# Though that's not through between layers so the layers use as input the output of the previous layer
# withtout layer norm
if output_hidden_states:
all_hidden_states += (self.layer_norm(hidden_states),)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
query_pos,
reference_points_input,
spatial_shapes,
level_start_index,
vision_encoder_hidden_states,
vision_encoder_attention_mask,
text_encoder_hidden_states,
text_encoder_attention_mask,
self_attn_mask,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states=hidden_states,
position_embeddings=query_pos,
reference_points=reference_points_input,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
vision_encoder_hidden_states=vision_encoder_hidden_states,
vision_encoder_attention_mask=vision_encoder_attention_mask,
text_encoder_hidden_states=text_encoder_hidden_states,
text_encoder_attention_mask=text_encoder_attention_mask,
self_attn_mask=self_attn_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
# hack implementation for iterative bounding box refinement
if self.bbox_embed is not None:
tmp = self.bbox_embed[idx](hidden_states)
num_coordinates = reference_points.shape[-1]
if num_coordinates == 4:
new_reference_points = tmp + torch.special.logit(reference_points, eps=1e-5)
new_reference_points = new_reference_points.sigmoid()
elif num_coordinates == 2:
new_reference_points = tmp
new_reference_points[..., :2] = tmp[..., :2] + torch.special.logit(reference_points, eps=1e-5)
new_reference_points = new_reference_points.sigmoid()
else:
raise ValueError(
f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}"
)
reference_points = new_reference_points.detach()
intermediate += (self.layer_norm(hidden_states),)
intermediate_reference_points += (reference_points,)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if text_encoder_hidden_states is not None:
all_cross_attns_text += (layer_outputs[2],)
if vision_encoder_hidden_states is not None:
all_cross_attns_vision += (layer_outputs[3],)
# Keep batch_size as first dimension
intermediate = torch.stack(intermediate, dim=1)
intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if output_attentions:
all_attns += (all_self_attns, all_cross_attns_text, all_cross_attns_vision)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
intermediate,
intermediate_reference_points,
all_hidden_states,
all_attns,
]
if v is not None
)
return GroundingDinoDecoderOutput(
last_hidden_state=hidden_states,
intermediate_hidden_states=intermediate,
intermediate_reference_points=intermediate_reference_points,
hidden_states=all_hidden_states,
attentions=all_attns,
)
# these correspond to [CLS], [SEP], . and ?
SPECIAL_TOKENS = [101, 102, 1012, 1029]
def generate_masks_with_special_tokens_and_transfer_map(input_ids: torch.LongTensor) -> Tuple[Tensor, Tensor]:
"""Generate attention mask between each pair of special tokens and positional ids.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Returns:
`tuple(torch.Tensor)` comprising attention mask between each special tokens and position_ids:
- **attention_mask** (`torch.BoolTensor` of shape `(batch_size, sequence_length, sequence_length)`)
- **position_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`)
"""
batch_size, num_token = input_ids.shape
# special_tokens_mask: batch_size, num_token. 1 for special tokens. 0 for normal tokens
special_tokens_mask = torch.zeros((batch_size, num_token), device=input_ids.device).bool()
for special_token in SPECIAL_TOKENS:
special_tokens_mask |= input_ids == special_token
# idxs: each row is a list of indices of special tokens
idxs = torch.nonzero(special_tokens_mask)
# generate attention mask and positional ids
attention_mask = torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(batch_size, 1, 1)
position_ids = torch.zeros((batch_size, num_token), device=input_ids.device)
previous_col = 0
for i in range(idxs.shape[0]):
row, col = idxs[i]
if (col == 0) or (col == num_token - 1):
attention_mask[row, col, col] = True
position_ids[row, col] = 0
else:
attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
position_ids[row, previous_col + 1 : col + 1] = torch.arange(
0, col - previous_col, device=input_ids.device
)
previous_col = col
return attention_mask, position_ids.to(torch.long)
@add_start_docstrings(
"""
The bare Grounding DINO Model (consisting of a backbone and encoder-decoder Transformer) outputting raw
hidden-states without any specific head on top.
""",
GROUNDING_DINO_START_DOCSTRING,
)
class GroundingDinoModel(GroundingDinoPreTrainedModel):
def __init__(self, config: GroundingDinoConfig):
super().__init__(config)
# Create backbone + positional encoding
backbone = GroundingDinoConvEncoder(config)
position_embeddings = build_position_encoding(config)
self.backbone = GroundingDinoConvModel(backbone, position_embeddings)
# Create input projection layers
if config.num_feature_levels > 1:
num_backbone_outs = len(backbone.intermediate_channel_sizes)
input_proj_list = []
for i in range(num_backbone_outs):
in_channels = backbone.intermediate_channel_sizes[i]
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, config.d_model, kernel_size=1),
nn.GroupNorm(32, config.d_model),
)
)
for _ in range(config.num_feature_levels - num_backbone_outs):
input_proj_list.append(
nn.Sequential(
nn.Conv2d(in_channels, config.d_model, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(32, config.d_model),
)
)
in_channels = config.d_model
self.input_proj_vision = nn.ModuleList(input_proj_list)
else:
self.input_proj_vision = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1),
nn.GroupNorm(32, config.d_model),
)
]
)
# Create text backbone
self.text_backbone = AutoModel.from_config(config.text_config, add_pooling_layer=False)
self.text_projection = nn.Linear(config.text_config.hidden_size, config.d_model)
if config.embedding_init_target or not config.two_stage:
self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model)
self.encoder = GroundingDinoEncoder(config)
self.decoder = GroundingDinoDecoder(config)
self.level_embed = nn.Parameter(torch.Tensor(config.num_feature_levels, config.d_model))
if config.two_stage:
self.enc_output = nn.Linear(config.d_model, config.d_model)
self.enc_output_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
if (
config.two_stage_bbox_embed_share
and config.decoder_bbox_embed_share
and self.decoder.bbox_embed is not None
):
self.encoder_output_bbox_embed = self.decoder.bbox_embed
else:
self.encoder_output_bbox_embed = GroundingDinoMLPPredictionHead(
input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
)
self.encoder_output_class_embed = GroundingDinoContrastiveEmbedding(config)
else:
self.reference_points = nn.Embedding(config.num_queries, 4)
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(False)
def unfreeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(True)
def get_valid_ratio(self, mask):
"""Get the valid ratio of all feature maps."""
_, height, width = mask.shape
valid_height = torch.sum(mask[:, :, 0], 1)
valid_width = torch.sum(mask[:, 0, :], 1)
valid_ratio_heigth = valid_height.float() / height
valid_ratio_width = valid_width.float() / width
valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1)
return valid_ratio
def generate_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes):
"""Generate the encoder output proposals from encoded enc_output.
Args:
enc_output (`torch.Tensor[batch_size, sequence_length, hidden_size]`): Output of the encoder.
padding_mask (`torch.Tensor[batch_size, sequence_length]`): Padding mask for `enc_output`.
spatial_shapes (`torch.Tensor[num_feature_levels, 2]`): Spatial shapes of the feature maps.
Returns:
`tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
- object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to
directly predict a bounding box. (without the need of a decoder)
- output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse
sigmoid.
"""
batch_size = enc_output.shape[0]
proposals = []
current_position = 0
for level, (height, width) in enumerate(spatial_shapes):
mask_flatten_ = padding_mask[:, current_position : (current_position + height * width)]
mask_flatten_ = mask_flatten_.view(batch_size, height, width, 1)
valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
grid_y, grid_x = meshgrid(
torch.linspace(0, height - 1, height, dtype=torch.float32, device=enc_output.device),
torch.linspace(0, width - 1, width, dtype=torch.float32, device=enc_output.device),
indexing="ij",
)
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale
width_heigth = torch.ones_like(grid) * 0.05 * (2.0**level)
proposal = torch.cat((grid, width_heigth), -1).view(batch_size, -1, 4)
proposals.append(proposal)
current_position += height * width
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
output_proposals = torch.log(output_proposals / (1 - output_proposals)) # inverse sigmoid
output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf"))
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
# assign each pixel as an object query
object_query = enc_output
object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0))
object_query = object_query.masked_fill(~output_proposals_valid, float(0))
object_query = self.enc_output_norm(self.enc_output(object_query))
return object_query, output_proposals
@add_start_docstrings_to_model_forward(GROUNDING_DINO_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=GroundingDinoModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
input_ids: Tensor,
token_type_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
pixel_mask: Optional[Tensor] = None,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, AutoModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "a cat."
>>> processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny")
>>> model = AutoModel.from_pretrained("IDEA-Research/grounding-dino-tiny")
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 900, 256]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_self_attention_masks, position_ids = generate_masks_with_special_tokens_and_transfer_map(input_ids)
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
text_token_mask = attention_mask.bool() # just to avoid renaming everywhere
max_text_len = self.config.max_text_len
if text_self_attention_masks.shape[1] > max_text_len:
text_self_attention_masks = text_self_attention_masks[:, :max_text_len, :max_text_len]
position_ids = position_ids[:, :max_text_len]
input_ids = input_ids[:, :max_text_len]
token_type_ids = token_type_ids[:, :max_text_len]
text_token_mask = text_token_mask[:, :max_text_len]
# Extract text features from text backbone
text_outputs = self.text_backbone(
input_ids, text_self_attention_masks, token_type_ids, position_ids, return_dict=return_dict
)
text_features = text_outputs.last_hidden_state if return_dict else text_outputs[0]
text_features = self.text_projection(text_features)
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device)
# Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper)
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
# which is a list of tuples
vision_features, position_embeddings_list = self.backbone(pixel_values, pixel_mask)
# Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
feature_maps = []
masks = []
for level, (source, mask) in enumerate(vision_features):
feature_maps.append(self.input_proj_vision[level](source))
masks.append(mask)
# Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
if self.config.num_feature_levels > len(feature_maps):
_len_sources = len(feature_maps)
for level in range(_len_sources, self.config.num_feature_levels):
if level == _len_sources:
source = self.input_proj_vision[level](vision_features[-1][0])
else:
source = self.input_proj_vision[level](feature_maps[-1])
mask = nn.functional.interpolate(pixel_mask[None].float(), size=source.shape[-2:]).to(torch.bool)[0]
pos_l = self.backbone.position_embedding(source, mask).to(source.dtype)
feature_maps.append(source)
masks.append(mask)
position_embeddings_list.append(pos_l)
# Create queries
query_embeds = None
if self.config.embedding_init_target or self.config.two_stage:
query_embeds = self.query_position_embeddings.weight
# Prepare encoder inputs (by flattening)
source_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for level, (source, mask, pos_embed) in enumerate(zip(feature_maps, masks, position_embeddings_list)):
batch_size, num_channels, height, width = source.shape
spatial_shape = (height, width)
spatial_shapes.append(spatial_shape)
source = source.flatten(2).transpose(1, 2)
mask = mask.flatten(1)
pos_embed = pos_embed.flatten(2).transpose(1, 2)
lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1)
lvl_pos_embed_flatten.append(lvl_pos_embed)
source_flatten.append(source)
mask_flatten.append(mask)
source_flatten = torch.cat(source_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
valid_ratios = valid_ratios.float()
# Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder
# Also provide spatial_shapes, level_start_index and valid_ratios
if encoder_outputs is None:
encoder_outputs = self.encoder(
vision_features=source_flatten,
vision_attention_mask=~mask_flatten,
vision_position_embedding=lvl_pos_embed_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
text_features=text_features,
text_attention_mask=~text_token_mask,
text_position_embedding=None,
text_self_attention_masks=~text_self_attention_masks,
text_position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a GroundingDinoEncoderOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, GroundingDinoEncoderOutput):
encoder_outputs = GroundingDinoEncoderOutput(
last_hidden_state_vision=encoder_outputs[0],
last_hidden_state_text=encoder_outputs[1],
vision_hidden_states=encoder_outputs[2] if output_hidden_states else None,
text_hidden_states=encoder_outputs[3] if output_hidden_states else None,
attentions=encoder_outputs[-1] if output_attentions else None,
)
# Fifth, prepare decoder inputs
enc_outputs_class = None
enc_outputs_coord_logits = None
if self.config.two_stage:
object_query_embedding, output_proposals = self.generate_encoder_output_proposals(
encoder_outputs[0], ~mask_flatten, spatial_shapes
)
# hack implementation as in two-stage Deformable DETR
# apply a detection head to each pixel (A.4 in paper)
# linear projection for bounding box binary classification (i.e. foreground and background)
enc_outputs_class = self.encoder_output_class_embed(
object_query_embedding, encoder_outputs[1], text_token_mask
)
# 3-layer FFN to predict bounding boxes coordinates (bbox regression branch)
delta_bbox = self.encoder_output_bbox_embed(object_query_embedding)
enc_outputs_coord_logits = delta_bbox + output_proposals
# only keep top scoring `config.num_queries` proposals
topk = self.config.num_queries
topk_logits = enc_outputs_class.max(-1)[0]
topk_proposals = torch.topk(topk_logits, topk, dim=1)[1]
topk_coords_logits = torch.gather(
enc_outputs_coord_logits, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
)
topk_coords_logits = topk_coords_logits.detach()
reference_points = topk_coords_logits.sigmoid()
init_reference_points = reference_points
if query_embeds is not None:
target = query_embeds.unsqueeze(0).repeat(batch_size, 1, 1)
else:
target = torch.gather(
object_query_embedding, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model)
).detach()
else:
target = query_embeds.unsqueeze(0).repeat(batch_size, 1, 1)
reference_points = self.reference_points.weight.unsqueeze(0).repeat(batch_size, 1, 1).sigmoid()
init_reference_points = reference_points
decoder_outputs = self.decoder(
inputs_embeds=target,
vision_encoder_hidden_states=encoder_outputs[0],
vision_encoder_attention_mask=mask_flatten,
text_encoder_hidden_states=encoder_outputs[1],
text_encoder_attention_mask=~text_token_mask,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
self_attn_mask=None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
enc_outputs = tuple(value for value in [enc_outputs_class, enc_outputs_coord_logits] if value is not None)
tuple_outputs = (
(decoder_outputs[0], init_reference_points) + decoder_outputs[1:] + encoder_outputs + enc_outputs
)
return tuple_outputs
return GroundingDinoModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
init_reference_points=init_reference_points,
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
intermediate_reference_points=decoder_outputs.intermediate_reference_points,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
encoder_last_hidden_state_vision=encoder_outputs.last_hidden_state_vision,
encoder_last_hidden_state_text=encoder_outputs.last_hidden_state_text,
encoder_vision_hidden_states=encoder_outputs.vision_hidden_states,
encoder_text_hidden_states=encoder_outputs.text_hidden_states,
encoder_attentions=encoder_outputs.attentions,
enc_outputs_class=enc_outputs_class,
enc_outputs_coord_logits=enc_outputs_coord_logits,
)
# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead
class GroundingDinoMLPPredictionHead(nn.Module):
"""
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
height and width of a bounding box w.r.t. an image.
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
# Copied from transformers.models.detr.modeling_detr._upcast
def _upcast(t: Tensor) -> Tensor:
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
else:
return t if t.dtype in (torch.int32, torch.int64) else t.int()
# Copied from transformers.models.detr.modeling_detr.box_area
def box_area(boxes: Tensor) -> Tensor:
"""
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
Args:
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
< x2` and `0 <= y1 < y2`.
Returns:
`torch.FloatTensor`: a tensor containing the area for each box.
"""
boxes = _upcast(boxes)
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# Copied from transformers.models.detr.modeling_detr.box_iou
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / union
return iou, union
# Copied from transformers.models.detr.modeling_detr.generalized_box_iou
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.
Returns:
`torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
"""
# degenerate boxes gives inf / nan results
# so do an early check
if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
iou, union = box_iou(boxes1, boxes2)
top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
area = width_height[:, :, 0] * width_height[:, :, 1]
return iou - (area - union) / area
# Copied from transformers.models.detr.modeling_detr._max_by_axis
def _max_by_axis(the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
# Copied from transformers.models.detr.modeling_detr.dice_loss
def dice_loss(inputs, targets, num_boxes):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs (0 for the negative class and 1 for the positive
class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_boxes
# Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs (`torch.FloatTensor` of arbitrary shape):
The predictions for each example.
targets (`torch.FloatTensor` with the same shape as `inputs`)
A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class
and 1 for the positive class).
alpha (`float`, *optional*, defaults to `0.25`):
Optional weighting factor in the range (0,1) to balance positive vs. negative examples.
gamma (`int`, *optional*, defaults to `2`):
Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
# add modulating factor
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1).sum() / num_boxes
# Copied from transformers.models.detr.modeling_detr.NestedTensor
class NestedTensor(object):
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
def to(self, device):
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
# Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
if tensor_list[0].ndim == 3:
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
batch_shape = [len(tensor_list)] + max_size
batch_size, num_channels, height, width = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
m[: img.shape[1], : img.shape[2]] = False
else:
raise ValueError("Only 3-dimensional tensors are supported")
return NestedTensor(tensor, mask)
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrHungarianMatcher with DeformableDetr->GroundingDino
class GroundingDinoHungarianMatcher(nn.Module):
"""
This class computes an assignment between the targets and the predictions of the network.
For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
Args:
class_cost:
The relative weight of the classification error in the matching cost.
bbox_cost:
The relative weight of the L1 error of the bounding box coordinates in the matching cost.
giou_cost:
The relative weight of the giou loss of the bounding box in the matching cost.
"""
def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
super().__init__()
requires_backends(self, ["scipy"])
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
raise ValueError("All costs of the Matcher can't be 0")
@torch.no_grad()
def forward(self, outputs, targets):
"""
Args:
outputs (`dict`):
A dictionary that contains at least these entries:
* "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
* "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
targets (`List[dict]`):
A list of targets (len(targets) = batch_size), where each target is a dict containing:
* "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
ground-truth
objects in the target) containing the class labels
* "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.
Returns:
`List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
batch_size, num_queries = outputs["logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
out_prob = outputs["logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost.
alpha = 0.25
gamma = 2.0
neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log())
pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss with DeformableDetr->GroundingDino
class GroundingDinoLoss(nn.Module):
"""
This class computes the losses for `GroundingDinoForObjectDetection`. The process happens in two steps: 1) we
compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of
matched ground-truth / prediction (supervise class and box).
Args:
matcher (`GroundingDinoHungarianMatcher`):
Module able to compute a matching between targets and proposals.
num_classes (`int`):
Number of object categories, omitting the special no-object category.
focal_alpha (`float`):
Alpha parameter in focal loss.
losses (`List[str]`):
List of all the losses to be applied. See `get_loss` for a list of all available losses.
"""
def __init__(self, matcher, num_classes, focal_alpha, losses):
super().__init__()
self.matcher = matcher
self.num_classes = num_classes
self.focal_alpha = focal_alpha
self.losses = losses
# removed logging parameter, which was part of the original implementation
def loss_labels(self, outputs, targets, indices, num_boxes):
"""
Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor
of dim [nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
source_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
)
target_classes[idx] = target_classes_o
target_classes_onehot = torch.zeros(
[source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1],
dtype=source_logits.dtype,
layout=source_logits.layout,
device=source_logits.device,
)
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
target_classes_onehot = target_classes_onehot[:, :, :-1]
loss_ce = (
sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2)
* source_logits.shape[1]
)
losses = {"loss_ce": loss_ce}
return losses
@torch.no_grad()
# Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_cardinality
def loss_cardinality(self, outputs, targets, indices, num_boxes):
"""
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
"""
logits = outputs["logits"]
device = logits.device
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
# Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_boxes
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.
Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
idx = self._get_source_permutation_idx(indices)
source_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
losses = {}
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(
generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
)
losses["loss_giou"] = loss_giou.sum() / num_boxes
return losses
# Copied from transformers.models.detr.modeling_detr.DetrLoss._get_source_permutation_idx
def _get_source_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
source_idx = torch.cat([source for (source, _) in indices])
return batch_idx, source_idx
# Copied from transformers.models.detr.modeling_detr.DetrLoss._get_target_permutation_idx
def _get_target_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
target_idx = torch.cat([target for (_, target) in indices])
return batch_idx, target_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes):
loss_map = {
"labels": self.loss_labels,
"cardinality": self.loss_cardinality,
"boxes": self.loss_boxes,
}
if loss not in loss_map:
raise ValueError(f"Loss {loss} not supported")
return loss_map[loss](outputs, targets, indices, num_boxes)
def forward(self, outputs, targets):
"""
This performs the loss computation.
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs" and k != "enc_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_boxes = sum(len(t["class_labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
world_size = 1
if is_accelerate_available():
if PartialState._shared_state != {}:
num_boxes = reduce(num_boxes)
world_size = PartialState().num_processes
num_boxes = torch.clamp(num_boxes / world_size, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "auxiliary_outputs" in outputs:
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
if "enc_outputs" in outputs:
enc_outputs = outputs["enc_outputs"]
bin_targets = copy.deepcopy(targets)
for bt in bin_targets:
bt["class_labels"] = torch.zeros_like(bt["class_labels"])
indices = self.matcher(enc_outputs, bin_targets)
for loss in self.losses:
l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes)
l_dict = {k + "_enc": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
@add_start_docstrings(
"""
Grounding DINO Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top,
for tasks such as COCO detection.
""",
GROUNDING_DINO_START_DOCSTRING,
)
class GroundingDinoForObjectDetection(GroundingDinoPreTrainedModel):
# When using clones, all layers > 0 will be clones, but layer 0 *is* required
# the bbox_embed in the decoder are all clones though
_tied_weights_keys = [r"bbox_embed\.[1-9]\d*", r"model\.decoder\.bbox_embed\.[0-9]\d*"]
def __init__(self, config: GroundingDinoConfig):
super().__init__(config)
self.model = GroundingDinoModel(config)
_class_embed = GroundingDinoContrastiveEmbedding(config)
if config.decoder_bbox_embed_share:
_bbox_embed = GroundingDinoMLPPredictionHead(
input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
)
self.bbox_embed = nn.ModuleList([_bbox_embed for _ in range(config.decoder_layers)])
else:
for _ in range(config.decoder_layers):
_bbox_embed = GroundingDinoMLPPredictionHead(
input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
)
self.bbox_embed = nn.ModuleList([_bbox_embed for _ in range(config.decoder_layers)])
self.class_embed = nn.ModuleList([_class_embed for _ in range(config.decoder_layers)])
# hack for box-refinement
self.model.decoder.bbox_embed = self.bbox_embed
# hack implementation for two-stage
self.model.decoder.class_embed = self.class_embed
# Initialize weights and apply final processing
self.post_init()
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
@add_start_docstrings_to_model_forward(GROUNDING_DINO_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=GroundingDinoObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor,
token_type_ids: torch.LongTensor = None,
attention_mask: torch.LongTensor = None,
pixel_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Union[GroundingDinoEncoderOutput, Tuple]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: List[Dict[str, Union[torch.LongTensor, torch.FloatTensor]]] = None,
):
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, GroundingDinoForObjectDetection
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "a cat."
>>> processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny")
>>> model = GroundingDinoForObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny")
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # convert outputs (bounding boxes and class logits) to COCO API
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = processor.image_processor.post_process_object_detection(
... outputs, threshold=0.35, target_sizes=target_sizes
... )[0]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
... box = [round(i, 2) for i in box.tolist()]
... print(f"Detected {label.item()} with confidence " f"{round(score.item(), 3)} at location {box}")
Detected 1 with confidence 0.453 at location [344.82, 23.18, 637.4, 373.83]
Detected 1 with confidence 0.408 at location [11.92, 51.58, 316.57, 472.89]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
# First, sent images through Grounding DINO base model to obtain encoder + decoder outputs
outputs = self.model(
pixel_values=pixel_values,
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
pixel_mask=pixel_mask,
encoder_outputs=encoder_outputs,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
idx = 5 + (1 if output_attentions else 0) + (1 if output_hidden_states else 0)
enc_text_hidden_state = outputs.encoder_last_hidden_state_text if return_dict else outputs[idx]
hidden_states = outputs.intermediate_hidden_states if return_dict else outputs[2]
init_reference_points = outputs.init_reference_points if return_dict else outputs[1]
inter_references_points = outputs.intermediate_reference_points if return_dict else outputs[3]
# class logits + predicted bounding boxes
outputs_classes = []
outputs_coords = []
# hidden_states are of shape (batch_size, num_stages, height, width)
# predict class and bounding box deltas for each stage
num_levels = hidden_states.shape[1]
for level in range(num_levels):
if level == 0:
reference = init_reference_points
else:
reference = inter_references_points[:, level - 1]
reference = torch.special.logit(reference, eps=1e-5)
outputs_class = self.class_embed[level](
vision_hidden_state=hidden_states[:, level],
text_hidden_state=enc_text_hidden_state,
text_token_mask=attention_mask.bool(),
)
delta_bbox = self.bbox_embed[level](hidden_states[:, level])
reference_coordinates = reference.shape[-1]
if reference_coordinates == 4:
outputs_coord_logits = delta_bbox + reference
elif reference_coordinates == 2:
delta_bbox[..., :2] += reference
outputs_coord_logits = delta_bbox
else:
raise ValueError(f"reference.shape[-1] should be 4 or 2, but got {reference.shape[-1]}")
outputs_coord = outputs_coord_logits.sigmoid()
outputs_classes.append(outputs_class)
outputs_coords.append(outputs_coord)
outputs_class = torch.stack(outputs_classes)
outputs_coord = torch.stack(outputs_coords)
logits = outputs_class[-1]
pred_boxes = outputs_coord[-1]
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
# First: create the matcher
matcher = GroundingDinoHungarianMatcher(
class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
)
# Second: create the criterion
losses = ["labels", "boxes", "cardinality"]
criterion = GroundingDinoLoss(
matcher=matcher,
num_classes=self.config.num_labels,
focal_alpha=self.config.focal_alpha,
losses=losses,
)
criterion.to(self.device)
# Third: compute the losses, based on outputs and labels
outputs_loss = {}
outputs_loss["logits"] = logits
outputs_loss["pred_boxes"] = pred_boxes
if self.config.auxiliary_loss:
auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord)
outputs_loss["auxiliary_outputs"] = auxiliary_outputs
if self.config.two_stage:
enc_outputs_coord = outputs[-1].sigmoid()
outputs_loss["enc_outputs"] = {"logits": outputs[-2], "pred_boxes": enc_outputs_coord}
loss_dict = criterion(outputs_loss, labels)
# Fourth: compute total loss, as a weighted sum of the various losses
weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
weight_dict["loss_giou"] = self.config.giou_loss_coefficient
if self.config.auxiliary_loss:
aux_weight_dict = {}
for i in range(self.config.decoder_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes) + auxiliary_outputs + outputs
else:
output = (logits, pred_boxes) + outputs
tuple_outputs = ((loss, loss_dict) + output) if loss is not None else output
return tuple_outputs
dict_outputs = GroundingDinoObjectDetectionOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
last_hidden_state=outputs.last_hidden_state,
auxiliary_outputs=auxiliary_outputs,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
encoder_last_hidden_state_vision=outputs.encoder_last_hidden_state_vision,
encoder_last_hidden_state_text=outputs.encoder_last_hidden_state_text,
encoder_vision_hidden_states=outputs.encoder_vision_hidden_states,
encoder_text_hidden_states=outputs.encoder_text_hidden_states,
encoder_attentions=outputs.encoder_attentions,
intermediate_hidden_states=outputs.intermediate_hidden_states,
intermediate_reference_points=outputs.intermediate_reference_points,
init_reference_points=outputs.init_reference_points,
enc_outputs_class=outputs.enc_outputs_class,
enc_outputs_coord_logits=outputs.enc_outputs_coord_logits,
)
return dict_outputs
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Grounding DINO.
"""
from typing import List, Optional, Tuple, Union
from ...image_processing_utils import BatchFeature
from ...image_transforms import center_to_corners_format
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType, is_torch_available
if is_torch_available():
import torch
def get_phrases_from_posmap(posmaps, input_ids):
"""Get token ids of phrases from posmaps and input_ids.
Args:
posmaps (`torch.BoolTensor` of shape `(num_boxes, hidden_size)`):
A boolean tensor of text-thresholded logits related to the detected bounding boxes.
input_ids (`torch.LongTensor`) of shape `(sequence_length, )`):
A tensor of token ids.
"""
left_idx = 0
right_idx = posmaps.shape[-1] - 1
# Avoiding altering the input tensor
posmaps = posmaps.clone()
posmaps[:, 0 : left_idx + 1] = False
posmaps[:, right_idx:] = False
token_ids = []
for posmap in posmaps:
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
token_ids.append([input_ids[i] for i in non_zero_idx])
return token_ids
class GroundingDinoProcessor(ProcessorMixin):
r"""
Constructs a Grounding DINO processor which wraps a Deformable DETR image processor and a BERT tokenizer into a
single processor.
[`GroundingDinoProcessor`] offers all the functionalities of [`GroundingDinoImageProcessor`] and
[`AutoTokenizer`]. See the docstring of [`~GroundingDinoProcessor.__call__`] and [`~GroundingDinoProcessor.decode`]
for more information.
Args:
image_processor (`GroundingDinoImageProcessor`):
An instance of [`GroundingDinoImageProcessor`]. The image processor is a required input.
tokenizer (`AutoTokenizer`):
An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "GroundingDinoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_token_type_ids: bool = True,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchEncoding:
"""
This method uses [`GroundingDinoImageProcessor.__call__`] method to prepare image(s) for the model, and
[`BertTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
if images is None and text is None:
raise ValueError("You have to specify either images or text.")
# Get only text
if images is not None:
encoding_image_processor = self.image_processor(images, return_tensors=return_tensors)
else:
encoding_image_processor = BatchFeature()
if text is not None:
text_encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_token_type_ids=return_token_type_ids,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
else:
text_encoding = BatchEncoding()
text_encoding.update(encoding_image_processor)
return text_encoding
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def post_process_grounded_object_detection(
self,
outputs,
input_ids,
box_threshold: float = 0.25,
text_threshold: float = 0.25,
target_sizes: Union[TensorType, List[Tuple]] = None,
):
"""
Converts the raw output of [`GroundingDinoForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format and get the associated text label.
Args:
outputs ([`GroundingDinoObjectDetectionOutput`]):
Raw outputs of the model.
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The token ids of the input text.
box_threshold (`float`, *optional*, defaults to 0.25):
Score threshold to keep object detection predictions.
text_threshold (`float`, *optional*, defaults to 0.25):
Score threshold to keep text detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
logits, boxes = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
probs = torch.sigmoid(logits) # (batch_size, num_queries, 256)
scores = torch.max(probs, dim=-1)[0] # (batch_size, num_queries)
# Convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(boxes)
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for idx, (s, b, p) in enumerate(zip(scores, boxes, probs)):
score = s[s > box_threshold]
box = b[s > box_threshold]
prob = p[s > box_threshold]
label_ids = get_phrases_from_posmap(prob > text_threshold, input_ids[idx])
label = self.batch_decode(label_ids)
results.append({"scores": score, "labels": label, "boxes": box})
return results
......@@ -4236,6 +4236,30 @@ class GraphormerPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
GROUNDING_DINO_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GroundingDinoForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GroundingDinoModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GroundingDinoPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
......@@ -247,6 +247,13 @@ class GLPNImageProcessor(metaclass=DummyObject):
requires_backends(self, ["vision"])
class GroundingDinoImageProcessor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class IdeficsImageProcessor(metaclass=DummyObject):
_backends = ["vision"]
......
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import pathlib
import unittest
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.models.grounding_dino.modeling_grounding_dino import GroundingDinoObjectDetectionOutput
if is_vision_available():
from PIL import Image
from transformers import GroundingDinoImageProcessor
class GroundingDinoImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_rescale=True,
rescale_factor=1 / 255,
do_pad=True,
):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.num_queries = 5
self.embed_dim = 5
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.prepare_image_processor_dict with DeformableDetr->GroundingDino
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.get_expected_values with DeformableDetr->GroundingDino
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to GroundingDinoImageProcessor,
assuming do_resize is set to True with a scalar size.
"""
if not batched:
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
if w < h:
expected_height = int(self.size["shortest_edge"] * h / w)
expected_width = self.size["shortest_edge"]
elif w > h:
expected_height = self.size["shortest_edge"]
expected_width = int(self.size["shortest_edge"] * w / h)
else:
expected_height = self.size["shortest_edge"]
expected_width = self.size["shortest_edge"]
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.expected_output_image_shape with DeformableDetr->GroundingDino
def expected_output_image_shape(self, images):
height, width = self.get_expected_values(images, batched=True)
return self.num_channels, height, width
def get_fake_grounding_dino_output(self):
torch.manual_seed(42)
return GroundingDinoObjectDetectionOutput(
pred_boxes=torch.rand(self.batch_size, self.num_queries, 4),
logits=torch.rand(self.batch_size, self.num_queries, self.embed_dim),
)
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.prepare_image_inputs with DeformableDetr->GroundingDino
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class GroundingDinoImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = GroundingDinoImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = GroundingDinoImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_image_processor_properties with DeformableDetr->GroundingDino
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "size"))
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_image_processor_from_dict_with_kwargs with DeformableDetr->GroundingDino
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
self.assertEqual(image_processor.do_pad, True)
image_processor = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False
)
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
self.assertEqual(image_processor.do_pad, False)
def test_post_process_object_detection(self):
image_processor = self.image_processing_class(**self.image_processor_dict)
outputs = self.image_processor_tester.get_fake_grounding_dino_output()
results = image_processor.post_process_object_detection(outputs, threshold=0.0)
self.assertEqual(len(results), self.image_processor_tester.batch_size)
self.assertEqual(list(results[0].keys()), ["scores", "labels", "boxes"])
self.assertEqual(results[0]["boxes"].shape, (self.image_processor_tester.num_queries, 4))
self.assertEqual(results[0]["scores"].shape, (self.image_processor_tester.num_queries,))
expected_scores = torch.tensor([0.7050, 0.7222, 0.7222, 0.6829, 0.7220])
self.assertTrue(torch.allclose(results[0]["scores"], expected_scores, atol=1e-4))
expected_box_slice = torch.tensor([0.6908, 0.4354, 1.0737, 1.3947])
self.assertTrue(torch.allclose(results[0]["boxes"][0], expected_box_slice, atol=1e-4))
@slow
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_call_pytorch_with_coco_detection_annotations with DeformableDetr->GroundingDino
def test_call_pytorch_with_coco_detection_annotations(self):
# prepare image and target
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"image_id": 39769, "annotations": target}
# encode them
image_processing = GroundingDinoImageProcessor()
encoding = image_processing(images=image, annotations=target, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
# verify area
expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
# verify image_id
expected_image_id = torch.tensor([39769])
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
# verify class_labels
expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
# verify size
expected_size = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
@slow
# Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_detection_annotations with Detr->GroundingDino
def test_batched_coco_detection_annotations(self):
image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
target = json.loads(f.read())
annotations_0 = {"image_id": 39769, "annotations": target}
annotations_1 = {"image_id": 39769, "annotations": target}
# Adjust the bounding boxes for the resized image
w_0, h_0 = image_0.size
w_1, h_1 = image_1.size
for i in range(len(annotations_1["annotations"])):
coords = annotations_1["annotations"][i]["bbox"]
new_bbox = [
coords[0] * w_1 / w_0,
coords[1] * h_1 / h_0,
coords[2] * w_1 / w_0,
coords[3] * h_1 / h_0,
]
annotations_1["annotations"][i]["bbox"] = new_bbox
images = [image_0, image_1]
annotations = [annotations_0, annotations_1]
image_processing = GroundingDinoImageProcessor()
encoding = image_processing(
images=images,
annotations=annotations,
return_segmentation_masks=True,
return_tensors="pt", # do_convert_annotations=True
)
# Check the pixel values have been padded
postprocessed_height, postprocessed_width = 800, 1066
expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
# Check the bounding boxes have been adjusted for padded images
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
expected_boxes_0 = torch.tensor(
[
[0.6879, 0.4609, 0.0755, 0.3691],
[0.2118, 0.3359, 0.2601, 0.1566],
[0.5011, 0.5000, 0.9979, 1.0000],
[0.5010, 0.5020, 0.9979, 0.9959],
[0.3284, 0.5944, 0.5884, 0.8112],
[0.8394, 0.5445, 0.3213, 0.9110],
]
)
expected_boxes_1 = torch.tensor(
[
[0.4130, 0.2765, 0.0453, 0.2215],
[0.1272, 0.2016, 0.1561, 0.0940],
[0.3757, 0.4933, 0.7488, 0.9865],
[0.3759, 0.5002, 0.7492, 0.9955],
[0.1971, 0.5456, 0.3532, 0.8646],
[0.5790, 0.4115, 0.3430, 0.7161],
]
)
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))
# Check the masks have also been padded
self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))
# Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
# format and not in the range [0, 1]
encoding = image_processing(
images=images,
annotations=annotations,
return_segmentation_masks=True,
do_convert_annotations=False,
return_tensors="pt",
)
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
# Convert to absolute coordinates
unnormalized_boxes_0 = torch.vstack(
[
expected_boxes_0[:, 0] * postprocessed_width,
expected_boxes_0[:, 1] * postprocessed_height,
expected_boxes_0[:, 2] * postprocessed_width,
expected_boxes_0[:, 3] * postprocessed_height,
]
).T
unnormalized_boxes_1 = torch.vstack(
[
expected_boxes_1[:, 0] * postprocessed_width,
expected_boxes_1[:, 1] * postprocessed_height,
expected_boxes_1[:, 2] * postprocessed_width,
expected_boxes_1[:, 3] * postprocessed_height,
]
).T
# Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
expected_boxes_0 = torch.vstack(
[
unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
]
).T
expected_boxes_1 = torch.vstack(
[
unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
]
).T
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))
@slow
# Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_call_pytorch_with_coco_panoptic_annotations with DeformableDetr->GroundingDino
def test_call_pytorch_with_coco_panoptic_annotations(self):
# prepare image, target and masks_path
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
# encode them
image_processing = GroundingDinoImageProcessor(format="coco_panoptic")
encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
# verify area
expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
# verify image_id
expected_image_id = torch.tensor([39769])
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
# verify class_labels
expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
# verify masks
expected_masks_sum = 822873
self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
# verify size
expected_size = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
@slow
# Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_panoptic_annotations with Detr->GroundingDino
def test_batched_coco_panoptic_annotations(self):
# prepare image, target and masks_path
image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
target = json.loads(f.read())
annotation_0 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
annotation_1 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
w_0, h_0 = image_0.size
w_1, h_1 = image_1.size
for i in range(len(annotation_1["segments_info"])):
coords = annotation_1["segments_info"][i]["bbox"]
new_bbox = [
coords[0] * w_1 / w_0,
coords[1] * h_1 / h_0,
coords[2] * w_1 / w_0,
coords[3] * h_1 / h_0,
]
annotation_1["segments_info"][i]["bbox"] = new_bbox
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
images = [image_0, image_1]
annotations = [annotation_0, annotation_1]
# encode them
image_processing = GroundingDinoImageProcessor(format="coco_panoptic")
encoding = image_processing(
images=images,
annotations=annotations,
masks_path=masks_path,
return_tensors="pt",
return_segmentation_masks=True,
)
# Check the pixel values have been padded
postprocessed_height, postprocessed_width = 800, 1066
expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
# Check the bounding boxes have been adjusted for padded images
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
expected_boxes_0 = torch.tensor(
[
[0.2625, 0.5437, 0.4688, 0.8625],
[0.7719, 0.4104, 0.4531, 0.7125],
[0.5000, 0.4927, 0.9969, 0.9854],
[0.1688, 0.2000, 0.2063, 0.0917],
[0.5492, 0.2760, 0.0578, 0.2187],
[0.4992, 0.4990, 0.9984, 0.9979],
]
)
expected_boxes_1 = torch.tensor(
[
[0.1576, 0.3262, 0.2814, 0.5175],
[0.4634, 0.2463, 0.2720, 0.4275],
[0.3002, 0.2956, 0.5985, 0.5913],
[0.1013, 0.1200, 0.1238, 0.0550],
[0.3297, 0.1656, 0.0347, 0.1312],
[0.2997, 0.2994, 0.5994, 0.5987],
]
)
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))
# Check the masks have also been padded
self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))
# Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
# format and not in the range [0, 1]
encoding = image_processing(
images=images,
annotations=annotations,
masks_path=masks_path,
return_segmentation_masks=True,
do_convert_annotations=False,
return_tensors="pt",
)
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
# Convert to absolute coordinates
unnormalized_boxes_0 = torch.vstack(
[
expected_boxes_0[:, 0] * postprocessed_width,
expected_boxes_0[:, 1] * postprocessed_height,
expected_boxes_0[:, 2] * postprocessed_width,
expected_boxes_0[:, 3] * postprocessed_height,
]
).T
unnormalized_boxes_1 = torch.vstack(
[
expected_boxes_1[:, 0] * postprocessed_width,
expected_boxes_1[:, 1] * postprocessed_height,
expected_boxes_1[:, 2] * postprocessed_width,
expected_boxes_1[:, 3] * postprocessed_height,
]
).T
# Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
expected_boxes_0 = torch.vstack(
[
unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
]
).T
expected_boxes_1 = torch.vstack(
[
unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
]
).T
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Grounding DINO model. """
import collections
import inspect
import math
import re
import unittest
from transformers import (
GroundingDinoConfig,
SwinConfig,
is_torch_available,
is_vision_available,
)
from transformers.file_utils import cached_property
from transformers.testing_utils import (
require_timm,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GroundingDinoForObjectDetection, GroundingDinoModel
from transformers.pytorch_utils import id_tensor_storage
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor
class GroundingDinoModelTester:
def __init__(
self,
parent,
batch_size=4,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
num_queries=2,
num_channels=3,
image_size=98,
n_targets=8,
num_labels=3,
num_feature_levels=4,
encoder_n_points=2,
decoder_n_points=6,
max_text_len=7,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_queries = num_queries
self.num_channels = num_channels
self.image_size = image_size
self.n_targets = n_targets
self.num_labels = num_labels
self.num_feature_levels = num_feature_levels
self.encoder_n_points = encoder_n_points
self.decoder_n_points = decoder_n_points
self.max_text_len = max_text_len
# we also set the expected seq length for both encoder and decoder
self.encoder_seq_length_vision = (
math.ceil(self.image_size / 8) ** 2
+ math.ceil(self.image_size / 16) ** 2
+ math.ceil(self.image_size / 32) ** 2
+ math.ceil(self.image_size / 64) ** 2
)
self.encoder_seq_length_text = self.max_text_len
self.decoder_seq_length = self.num_queries
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device)
input_ids = ids_tensor([self.batch_size, self.max_text_len], self.num_labels)
labels = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
labels = []
for i in range(self.batch_size):
target = {}
target["class_labels"] = torch.randint(
high=self.num_labels, size=(self.n_targets,), device=torch_device
)
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device)
labels.append(target)
config = self.get_config()
return config, pixel_values, pixel_mask, input_ids, labels
def get_config(self):
swin_config = SwinConfig(
window_size=7,
embed_dim=8,
depths=[1, 1, 1, 1],
num_heads=[1, 1, 1, 1],
image_size=self.image_size,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
)
text_backbone = {
"hidden_size": 8,
"num_hidden_layers": 2,
"num_attention_heads": 2,
"intermediate_size": 8,
"max_position_embeddings": 8,
"model_type": "bert",
}
return GroundingDinoConfig(
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
num_queries=self.num_queries,
num_labels=self.num_labels,
num_feature_levels=self.num_feature_levels,
encoder_n_points=self.encoder_n_points,
decoder_n_points=self.decoder_n_points,
use_timm_backbone=False,
backbone_config=swin_config,
max_text_len=self.max_text_len,
text_config=text_backbone,
)
def prepare_config_and_inputs_for_common(self):
config, pixel_values, pixel_mask, input_ids, labels = self.prepare_config_and_inputs()
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask, "input_ids": input_ids}
return config, inputs_dict
def create_and_check_model(self, config, pixel_values, pixel_mask, input_ids, labels):
model = GroundingDinoModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, input_ids=input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size))
def create_and_check_object_detection_head_model(self, config, pixel_values, pixel_mask, input_ids, labels):
model = GroundingDinoForObjectDetection(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, input_ids=input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, config.max_text_len))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, input_ids=input_ids, labels=labels)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, config.max_text_len))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
@require_torch
class GroundingDinoModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (GroundingDinoModel, GroundingDinoForObjectDetection) if is_torch_available() else ()
is_encoder_decoder = True
test_torchscript = False
test_pruning = False
test_head_masking = False
test_missing_keys = False
pipeline_model_mapping = (
{"image-feature-extraction": GroundingDinoModel, "zero-shot-object-detection": GroundingDinoForObjectDetection}
if is_torch_available()
else {}
)
# special case for head models
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "GroundingDinoForObjectDetection":
labels = []
for i in range(self.model_tester.batch_size):
target = {}
target["class_labels"] = torch.ones(
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
)
target["boxes"] = torch.ones(
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
)
target["masks"] = torch.ones(
self.model_tester.n_targets,
self.model_tester.image_size,
self.model_tester.image_size,
device=torch_device,
dtype=torch.float,
)
labels.append(target)
inputs_dict["labels"] = labels
return inputs_dict
def setUp(self):
self.model_tester = GroundingDinoModelTester(self)
self.config_tester = ConfigTester(self, config_class=GroundingDinoConfig, has_text_modality=False)
def test_config(self):
# we don't test common_properties and arguments_init as these don't apply for Grounding DINO
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_object_detection_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_object_detection_head_model(*config_and_inputs)
@unittest.skip(reason="Grounding DINO does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Grounding DINO does not have a get_input_embeddings method")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="Grounding DINO does not use token embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions[-1]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions[-1]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.encoder_n_points,
],
)
out_len = len(outputs)
correct_outlen = 10
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Object Detection model returns pred_logits and pred_boxes
if model_class.__name__ == "GroundingDinoForObjectDetection":
correct_outlen += 2
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions[0]
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries],
)
# cross attentions
cross_attentions = outputs.decoder_attentions[-1]
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.decoder_n_points,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 3, len(outputs))
self_attentions = outputs.encoder_attentions[-1]
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.encoder_n_points,
],
)
# overwrite since hidden_states are called encoder_text_hidden_states
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_vision_hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = self.model_tester.encoder_seq_length_vision
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_len, self.model_tester.hidden_size],
)
hidden_states = outputs.encoder_text_hidden_states
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = self.model_tester.encoder_seq_length_text
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_len, self.model_tester.hidden_size],
)
hidden_states = outputs.decoder_hidden_states
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[decoder_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
encoder_hidden_states = outputs.encoder_vision_hidden_states[0]
encoder_attentions = outputs.encoder_attentions[0][0]
encoder_hidden_states.retain_grad()
encoder_attentions.retain_grad()
cross_attentions = outputs.decoder_attentions[-1][0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values", "input_ids"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_different_timm_backbone(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# let's pick a random timm backbone
config.backbone = "tf_mobilenetv3_small_075"
config.use_timm_backbone = True
config.backbone_config = None
config.backbone_kwargs = {"in_chans": 3, "out_indices": (2, 3, 4)}
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if model_class.__name__ == "GroundingDinoForObjectDetection":
expected_shape = (
self.model_tester.batch_size,
self.model_tester.num_queries,
config.max_text_len,
)
self.assertEqual(outputs.logits.shape, expected_shape)
self.assertTrue(outputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
if (
"level_embed" in name
or "sampling_offsets.bias" in name
or "text_param" in name
or "vision_param" in name
or "value_proj" in name
or "output_proj" in name
or "reference_points" in name
):
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# Copied from tests.models.deformable_detr.test_modeling_deformable_detr.DeformableDetrModelTest.test_two_stage_training with DeformableDetr->GroundingDino
def test_two_stage_training(self):
model_class = GroundingDinoForObjectDetection
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
config.two_stage = True
config.auxiliary_loss = True
config.with_box_refine = True
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_tied_weights_keys(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
config.tie_word_embeddings = True
for model_class in self.all_model_classes:
model_tied = model_class(config)
ptrs = collections.defaultdict(list)
for name, tensor in model_tied.state_dict().items():
ptrs[id_tensor_storage(tensor)].append(name)
# These are all the pointers of shared tensors.
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
# Detect we get a hit for each key
for key in tied_weight_keys:
if not any(re.search(key, p) for group in tied_params for p in group):
raise ValueError(f"{key} is not a tied weight key for {model_class}.")
# Removed tied weights found from tied params -> there should only be one left after
for key in tied_weight_keys:
for i in range(len(tied_params)):
tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]
# GroundingDino when sharing weights also uses the shared ones in GroundingDinoDecoder
# Therefore, differently from DeformableDetr, we expect the group lens to be 2
# one for self.bbox_embed in GroundingDinoForObejectDetection and another one
# in the decoder
tied_params = [group for group in tied_params if len(group) > 2]
self.assertListEqual(
tied_params,
[],
f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
def prepare_text():
text = "a cat."
return text
@require_timm
@require_vision
@slow
class GroundingDinoModelIntegrationTests(unittest.TestCase):
@cached_property
def default_processor(self):
return AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny") if is_vision_available() else None
def test_inference_object_detection_head(self):
model = GroundingDinoForObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny").to(torch_device)
processor = self.default_processor
image = prepare_img()
text = prepare_text()
encoding = processor(images=image, text=text, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.d_model))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_boxes = torch.tensor(
[[0.7674, 0.4136, 0.4572], [0.2566, 0.5463, 0.4760], [0.2585, 0.5442, 0.4641]]
).to(torch_device)
expected_logits = torch.tensor(
[[-4.8913, -0.1900, -0.2161], [-4.9653, -0.3719, -0.3950], [-5.9599, -3.3765, -3.3104]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-3))
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4))
# verify postprocessing
results = processor.image_processor.post_process_object_detection(
outputs, threshold=0.35, target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.4526, 0.4082]).to(torch_device)
expected_slice_boxes = torch.tensor([344.8143, 23.1796, 637.4004, 373.8295]).to(torch_device)
self.assertEqual(len(results["scores"]), 2)
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-3))
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes, atol=1e-2))
# verify grounded postprocessing
expected_labels = ["a cat", "a cat"]
results = processor.post_process_grounded_object_detection(
outputs=outputs,
input_ids=encoding.input_ids,
box_threshold=0.35,
text_threshold=0.3,
target_sizes=[image.size[::-1]],
)[0]
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-3))
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes, atol=1e-2))
self.assertListEqual(results["labels"], expected_labels)
@require_torch_gpu
def test_inference_object_detection_head_equivalence_cpu_gpu(self):
processor = self.default_processor
image = prepare_img()
text = prepare_text()
encoding = processor(images=image, text=text, return_tensors="pt")
# 1. run model on CPU
model = GroundingDinoForObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny")
with torch.no_grad():
cpu_outputs = model(**encoding)
# 2. run model on GPU
model.to("cuda")
encoding = encoding.to("cuda")
with torch.no_grad():
gpu_outputs = model(**encoding)
# 3. assert equivalence
for key in cpu_outputs.keys():
self.assertTrue(torch.allclose(cpu_outputs[key], gpu_outputs[key].cpu(), atol=1e-3))
expected_logits = torch.tensor(
[[-4.8915, -0.1900, -0.2161], [-4.9658, -0.3716, -0.3948], [-5.9596, -3.3763, -3.3103]]
)
self.assertTrue(torch.allclose(cpu_outputs.logits[0, :3, :3], expected_logits, atol=1e-3))
# assert postprocessing
results_cpu = processor.image_processor.post_process_object_detection(
cpu_outputs, threshold=0.35, target_sizes=[image.size[::-1]]
)[0]
result_gpu = processor.image_processor.post_process_object_detection(
gpu_outputs, threshold=0.35, target_sizes=[image.size[::-1]]
)[0]
self.assertTrue(torch.allclose(results_cpu["scores"], result_gpu["scores"].cpu(), atol=1e-3))
self.assertTrue(torch.allclose(results_cpu["boxes"], result_gpu["boxes"].cpu(), atol=1e-3))
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast, GroundingDinoProcessor
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
from transformers.models.grounding_dino.modeling_grounding_dino import GroundingDinoObjectDetectionOutput
if is_vision_available():
from PIL import Image
from transformers import GroundingDinoImageProcessor
@require_torch
@require_vision
class GroundingDinoProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
vocab_tokens = ["[UNK]","[CLS]","[SEP]","[PAD]","[MASK]","want","##want","##ed","wa","un","runn","##ing",",","low","lowest"] # fmt: skip
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
image_processor_map = {
"do_resize": True,
"size": None,
"do_normalize": True,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5],
"do_rescale": True,
"rescale_factor": 1 / 255,
"do_pad": True,
}
self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
with open(self.image_processor_file, "w", encoding="utf-8") as fp:
json.dump(image_processor_map, fp)
self.batch_size = 7
self.num_queries = 5
self.embed_dim = 5
self.seq_length = 5
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.get_tokenizer with CLIP->Bert
def get_tokenizer(self, **kwargs):
return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.get_rust_tokenizer with CLIP->Bert
def get_rust_tokenizer(self, **kwargs):
return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.get_image_processor with CLIP->GroundingDino
def get_image_processor(self, **kwargs):
return GroundingDinoImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.tearDown
def tearDown(self):
shutil.rmtree(self.tmpdirname)
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.prepare_image_inputs
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def get_fake_grounding_dino_output(self):
torch.manual_seed(42)
return GroundingDinoObjectDetectionOutput(
pred_boxes=torch.rand(self.batch_size, self.num_queries, 4),
logits=torch.rand(self.batch_size, self.num_queries, self.embed_dim),
)
def get_fake_grounding_dino_input_ids(self):
input_ids = torch.tensor([101, 1037, 4937, 1012, 102])
return torch.stack([input_ids] * self.batch_size, dim=0)
def test_post_process_grounded_object_detection(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor)
grounding_dino_output = self.get_fake_grounding_dino_output()
grounding_dino_input_ids = self.get_fake_grounding_dino_input_ids()
post_processed = processor.post_process_grounded_object_detection(
grounding_dino_output, grounding_dino_input_ids
)
self.assertEqual(len(post_processed), self.batch_size)
self.assertEqual(list(post_processed[0].keys()), ["scores", "labels", "boxes"])
self.assertEqual(post_processed[0]["boxes"].shape, (self.num_queries, 4))
self.assertEqual(post_processed[0]["scores"].shape, (self.num_queries,))
expected_scores = torch.tensor([0.7050, 0.7222, 0.7222, 0.6829, 0.7220])
self.assertTrue(torch.allclose(post_processed[0]["scores"], expected_scores, atol=1e-4))
expected_box_slice = torch.tensor([0.6908, 0.4354, 1.0737, 1.3947])
self.assertTrue(torch.allclose(post_processed[0]["boxes"][0], expected_box_slice, atol=1e-4))
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_save_load_pretrained_default with CLIP->GroundingDino,GroundingDinoTokenizer->BertTokenizer
def test_save_load_pretrained_default(self):
tokenizer_slow = self.get_tokenizer()
tokenizer_fast = self.get_rust_tokenizer()
image_processor = self.get_image_processor()
processor_slow = GroundingDinoProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
processor_slow.save_pretrained(self.tmpdirname)
processor_slow = GroundingDinoProcessor.from_pretrained(self.tmpdirname, use_fast=False)
processor_fast = GroundingDinoProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
processor_fast.save_pretrained(self.tmpdirname)
processor_fast = GroundingDinoProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer, BertTokenizer)
self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast)
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor, GroundingDinoImageProcessor)
self.assertIsInstance(processor_fast.image_processor, GroundingDinoImageProcessor)
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_save_load_pretrained_additional_features with CLIP->GroundingDino,GroundingDinoTokenizer->BertTokenizer
def test_save_load_pretrained_additional_features(self):
processor = GroundingDinoProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = GroundingDinoProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, BertTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, GroundingDinoImageProcessor)
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_image_processor with CLIP->GroundingDino
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_image_proc = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2)
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_tokenizer with CLIP->GroundingDino
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(
list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values", "pixel_mask"]
)
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_tokenizer_decode with CLIP->GroundingDino
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
# Copied from tests.models.clip.test_processor_clip.CLIPProcessorTest.test_model_input_names with CLIP->GroundingDino
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = GroundingDinoProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), processor.model_input_names)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment