"...lm-evaluation-harness.git" did not exist on "b88e3618127f47f3720454095d51b5ccac1ee352"
Unverified Commit b6404866 authored by Hilco van der Wilk's avatar Hilco van der Wilk Committed by GitHub
Browse files

Update legacy Repository usage in various example files (#29085)

* Update legacy Repository usage in `examples/pytorch/text-classification/run_glue_no_trainer.py`

Marked for deprecation here https://huggingface.co/docs/huggingface_hub/guides/upload#legacy-upload-files-with-git-lfs

* Fix import order

* Replace all example usage of deprecated Repository

* Fix remaining repo call and rename args variable

* Revert removing creation of gitignore files and don't change research examples
parent f1a565a3
......@@ -36,7 +36,7 @@ from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from filelock import FileLock
from huggingface_hub import Repository, create_repo
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
......@@ -375,9 +375,8 @@ def main():
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
api = HfApi()
repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......@@ -755,8 +754,12 @@ def main():
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
api.upload_folder(
commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if args.checkpointing_steps == "epoch":
......@@ -774,7 +777,13 @@ def main():
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
all_results = {f"eval_{k}": v for k, v in result.items()}
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
......
......@@ -28,7 +28,7 @@ from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import Repository, create_repo
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
......@@ -255,9 +255,8 @@ def main():
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
api = HfApi()
repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......@@ -611,8 +610,12 @@ def main():
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
api.upload_folder(
commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if args.checkpointing_steps == "epoch":
......@@ -633,7 +636,13 @@ def main():
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if args.task_name == "mnli":
# Final evaluation on mismatched validation set
......
......@@ -34,7 +34,7 @@ from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import ClassLabel, load_dataset
from huggingface_hub import Repository, create_repo
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
......@@ -310,9 +310,8 @@ def main():
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
api = HfApi()
repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......@@ -776,8 +775,12 @@ def main():
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
api.upload_folder(
commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if args.checkpointing_steps == "epoch":
......@@ -798,7 +801,13 @@ def main():
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
all_results = {f"eval_{k}": v for k, v in eval_metric.items()}
if args.with_tracking:
......
......@@ -34,7 +34,7 @@ from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import Repository, create_repo
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
......@@ -355,9 +355,8 @@ def main():
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
api = HfApi()
repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
......@@ -743,8 +742,12 @@ def main():
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
api.upload_folder(
commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if args.checkpointing_steps == "epoch":
......@@ -765,7 +768,13 @@ def main():
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump({"eval_bleu": eval_metric["score"]}, f)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment