"git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "98435e595ade37ea0464b9e51311015d9c3a3dfc"
Unverified Commit b6404866 authored by Hilco van der Wilk's avatar Hilco van der Wilk Committed by GitHub
Browse files

Update legacy Repository usage in various example files (#29085)

* Update legacy Repository usage in `examples/pytorch/text-classification/run_glue_no_trainer.py`

Marked for deprecation here https://huggingface.co/docs/huggingface_hub/guides/upload#legacy-upload-files-with-git-lfs

* Fix import order

* Replace all example usage of deprecated Repository

* Fix remaining repo call and rename args variable

* Revert removing creation of gitignore files and don't change research examples
parent f1a565a3
...@@ -36,7 +36,7 @@ from accelerate.logging import get_logger ...@@ -36,7 +36,7 @@ from accelerate.logging import get_logger
from accelerate.utils import set_seed from accelerate.utils import set_seed
from datasets import load_dataset from datasets import load_dataset
from filelock import FileLock from filelock import FileLock
from huggingface_hub import Repository, create_repo from huggingface_hub import HfApi
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from tqdm.auto import tqdm from tqdm.auto import tqdm
...@@ -375,9 +375,8 @@ def main(): ...@@ -375,9 +375,8 @@ def main():
if repo_name is None: if repo_name is None:
repo_name = Path(args.output_dir).absolute().name repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id # Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id api = HfApi()
# Clone repo locally repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore: if "step_*" not in gitignore:
...@@ -755,8 +754,12 @@ def main(): ...@@ -755,8 +754,12 @@ def main():
) )
if accelerator.is_main_process: if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub( api.upload_folder(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
) )
if args.checkpointing_steps == "epoch": if args.checkpointing_steps == "epoch":
...@@ -774,7 +777,13 @@ def main(): ...@@ -774,7 +777,13 @@ def main():
if accelerator.is_main_process: if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub: if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
all_results = {f"eval_{k}": v for k, v in result.items()} all_results = {f"eval_{k}": v for k, v in result.items()}
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
......
...@@ -28,7 +28,7 @@ from accelerate import Accelerator ...@@ -28,7 +28,7 @@ from accelerate import Accelerator
from accelerate.logging import get_logger from accelerate.logging import get_logger
from accelerate.utils import set_seed from accelerate.utils import set_seed
from datasets import load_dataset from datasets import load_dataset
from huggingface_hub import Repository, create_repo from huggingface_hub import HfApi
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from tqdm.auto import tqdm from tqdm.auto import tqdm
...@@ -255,9 +255,8 @@ def main(): ...@@ -255,9 +255,8 @@ def main():
if repo_name is None: if repo_name is None:
repo_name = Path(args.output_dir).absolute().name repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id # Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id api = HfApi()
# Clone repo locally repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore: if "step_*" not in gitignore:
...@@ -611,8 +610,12 @@ def main(): ...@@ -611,8 +610,12 @@ def main():
) )
if accelerator.is_main_process: if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub( api.upload_folder(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
) )
if args.checkpointing_steps == "epoch": if args.checkpointing_steps == "epoch":
...@@ -633,7 +636,13 @@ def main(): ...@@ -633,7 +636,13 @@ def main():
if accelerator.is_main_process: if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub: if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if args.task_name == "mnli": if args.task_name == "mnli":
# Final evaluation on mismatched validation set # Final evaluation on mismatched validation set
......
...@@ -34,7 +34,7 @@ from accelerate import Accelerator ...@@ -34,7 +34,7 @@ from accelerate import Accelerator
from accelerate.logging import get_logger from accelerate.logging import get_logger
from accelerate.utils import set_seed from accelerate.utils import set_seed
from datasets import ClassLabel, load_dataset from datasets import ClassLabel, load_dataset
from huggingface_hub import Repository, create_repo from huggingface_hub import HfApi
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from tqdm.auto import tqdm from tqdm.auto import tqdm
...@@ -310,9 +310,8 @@ def main(): ...@@ -310,9 +310,8 @@ def main():
if repo_name is None: if repo_name is None:
repo_name = Path(args.output_dir).absolute().name repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id # Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id api = HfApi()
# Clone repo locally repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore: if "step_*" not in gitignore:
...@@ -776,8 +775,12 @@ def main(): ...@@ -776,8 +775,12 @@ def main():
) )
if accelerator.is_main_process: if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub( api.upload_folder(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
) )
if args.checkpointing_steps == "epoch": if args.checkpointing_steps == "epoch":
...@@ -798,7 +801,13 @@ def main(): ...@@ -798,7 +801,13 @@ def main():
if accelerator.is_main_process: if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub: if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
all_results = {f"eval_{k}": v for k, v in eval_metric.items()} all_results = {f"eval_{k}": v for k, v in eval_metric.items()}
if args.with_tracking: if args.with_tracking:
......
...@@ -34,7 +34,7 @@ from accelerate import Accelerator ...@@ -34,7 +34,7 @@ from accelerate import Accelerator
from accelerate.logging import get_logger from accelerate.logging import get_logger
from accelerate.utils import set_seed from accelerate.utils import set_seed
from datasets import load_dataset from datasets import load_dataset
from huggingface_hub import Repository, create_repo from huggingface_hub import HfApi
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from tqdm.auto import tqdm from tqdm.auto import tqdm
...@@ -355,9 +355,8 @@ def main(): ...@@ -355,9 +355,8 @@ def main():
if repo_name is None: if repo_name is None:
repo_name = Path(args.output_dir).absolute().name repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id # Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id api = HfApi()
# Clone repo locally repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore: if "step_*" not in gitignore:
...@@ -743,8 +742,12 @@ def main(): ...@@ -743,8 +742,12 @@ def main():
) )
if accelerator.is_main_process: if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub( api.upload_folder(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
) )
if args.checkpointing_steps == "epoch": if args.checkpointing_steps == "epoch":
...@@ -765,7 +768,13 @@ def main(): ...@@ -765,7 +768,13 @@ def main():
if accelerator.is_main_process: if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub: if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump({"eval_bleu": eval_metric["score"]}, f) json.dump({"eval_bleu": eval_metric["score"]}, f)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment