Commit b5ec526f authored by thomwolf's avatar thomwolf
Browse files

updated data processor and metrics

parent 0b82e3d0
...@@ -130,5 +130,5 @@ runs ...@@ -130,5 +130,5 @@ runs
examples/runs examples/runs
# data # data
data /data
serialization_dir serialization_dir
\ No newline at end of file
...@@ -46,7 +46,10 @@ from pytorch_transformers import (WEIGHTS_NAME, BertConfig, ...@@ -46,7 +46,10 @@ from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
from pytorch_transformers import AdamW, WarmupLinearSchedule from pytorch_transformers import AdamW, WarmupLinearSchedule
from pytorch_transformers.preprocessing import (compute_metrics, output_modes, processors, convert_examples_to_glue_features) from pytorch_transformers import glue_compute_metrics as compute_metrics
from pytorch_transformers import glue_output_modes as output_modes
from pytorch_transformers import glue_processors as processors
from pytorch_transformers import glue_convert_examples_to_features as convert_examples_to_features
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -275,7 +278,7 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False): ...@@ -275,7 +278,7 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
# HACK(label indices are swapped in RoBERTa pretrained model) # HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1] label_list[1], label_list[2] = label_list[2], label_list[1]
examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
features = convert_examples_to_glue_features(examples, label_list, args.max_seq_length, tokenizer, output_mode, features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode,
pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0, pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
......
...@@ -73,3 +73,10 @@ from .optimization import (AdamW, ConstantLRSchedule, WarmupConstantSchedule, Wa ...@@ -73,3 +73,10 @@ from .optimization import (AdamW, ConstantLRSchedule, WarmupConstantSchedule, Wa
from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE, from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE,
cached_path, add_start_docstrings, add_end_docstrings, cached_path, add_start_docstrings, add_end_docstrings,
WEIGHTS_NAME, TF_WEIGHTS_NAME, CONFIG_NAME) WEIGHTS_NAME, TF_WEIGHTS_NAME, CONFIG_NAME)
from .data import (is_sklearn_available,
InputExample, InputFeatures, DataProcessor,
glue_output_modes, glue_convert_examples_to_features, glue_processors)
if is_sklearn_available():
from .data import glue_compute_metrics
from .processors import (InputExample, InputFeatures, DataProcessor,
glue_output_modes, glue_convert_examples_to_features, glue_processors)
from .metrics import is_sklearn_available
if is_sklearn_available():
from .metrics import glue_compute_metrics
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import sys
import logging
logger = logging.getLogger(__name__)
try:
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef, f1_score
_has_sklearn = True
except e:
logger.warning("To use data.metrics please install scikit-learn. See https://scikit-learn.org/stable/index.html")
_has_sklearn = False
def is_sklearn_available():
return _has_sklearn
if _has_sklearn:
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
return {
"acc": acc,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
def pearson_and_spearman(preds, labels):
pearson_corr = pearsonr(preds, labels)[0]
spearman_corr = spearmanr(preds, labels)[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def glue_compute_metrics(task_name, preds, labels):
assert len(preds) == len(labels)
if task_name == "cola":
return {"mcc": matthews_corrcoef(labels, preds)}
elif task_name == "sst-2":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mrpc":
return acc_and_f1(preds, labels)
elif task_name == "sts-b":
return pearson_and_spearman(preds, labels)
elif task_name == "qqp":
return acc_and_f1(preds, labels)
elif task_name == "mnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mnli-mm":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "qnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "rte":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "wnli":
return {"acc": simple_accuracy(preds, labels)}
else:
raise KeyError(task_name)
from .utils import InputExample, InputFeatures, DataProcessor
from .glue import output_modes, processors, convert_examples_to_glue_features
...@@ -15,12 +15,50 @@ ...@@ -15,12 +15,50 @@
# limitations under the License. # limitations under the License.
""" GLUE processors and helpers """ """ GLUE processors and helpers """
from .utils import DataProcessor
import logging import logging
import os import os
from .utils import DataProcessor, InputExample, InputFeatures
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
GLUE_TASKS_NUM_LABELS = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mnli-mm": MnliMismatchedProcessor,
"mrpc": MrpcProcessor,
"sst-2": Sst2Processor,
"sts-b": StsbProcessor,
"qqp": QqpProcessor,
"qnli": QnliProcessor,
"rte": RteProcessor,
"wnli": WnliProcessor,
}
output_modes = {
"cola": "classification",
"mnli": "classification",
"mnli-mm": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
"qqp": "classification",
"qnli": "classification",
"rte": "classification",
"wnli": "classification",
}
def convert_examples_to_glue_features(examples, label_list, max_seq_length, def convert_examples_to_glue_features(examples, label_list, max_seq_length,
tokenizer, output_mode, tokenizer, output_mode,
...@@ -91,37 +129,6 @@ def convert_examples_to_glue_features(examples, label_list, max_seq_length, ...@@ -91,37 +129,6 @@ def convert_examples_to_glue_features(examples, label_list, max_seq_length,
return features return features
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class MrpcProcessor(DataProcessor): class MrpcProcessor(DataProcessor):
"""Processor for the MRPC data set (GLUE version).""" """Processor for the MRPC data set (GLUE version)."""
...@@ -420,15 +427,3 @@ class WnliProcessor(DataProcessor): ...@@ -420,15 +427,3 @@ class WnliProcessor(DataProcessor):
examples.append( examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples return examples
GLUE_TASKS_NUM_LABELS = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
\ No newline at end of file
...@@ -17,8 +17,34 @@ ...@@ -17,8 +17,34 @@
import csv import csv
import sys import sys
from scipy.stats import pearsonr, spearmanr class InputExample(object):
from sklearn.metrics import matthews_corrcoef, f1_score """A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object): class DataProcessor(object):
...@@ -47,53 +73,3 @@ class DataProcessor(object): ...@@ -47,53 +73,3 @@ class DataProcessor(object):
line = list(unicode(cell, 'utf-8') for cell in line) line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line) lines.append(line)
return lines return lines
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
return {
"acc": acc,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
def pearson_and_spearman(preds, labels):
pearson_corr = pearsonr(preds, labels)[0]
spearman_corr = spearmanr(preds, labels)[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def compute_metrics(task_name, preds, labels):
assert len(preds) == len(labels)
if task_name == "cola":
return {"mcc": matthews_corrcoef(labels, preds)}
elif task_name == "sst-2":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mrpc":
return acc_and_f1(preds, labels)
elif task_name == "sts-b":
return pearson_and_spearman(preds, labels)
elif task_name == "qqp":
return acc_and_f1(preds, labels)
elif task_name == "mnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mnli-mm":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "qnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "rte":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "wnli":
return {"acc": simple_accuracy(preds, labels)}
else:
raise KeyError(task_name)
\ No newline at end of file
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .glue import (ColaProcessor,
MnliProcessor,
MnliMismatchedProcessor,
MrpcProcessor,
Sst2Processor,
StsbProcessor,
QqpProcessor,
QnliProcessor,
RteProcessor,
WnliProcessor,
convert_examples_to_glue_features,
)
from .utils import DataProcessor, simple_accuracy, acc_and_f1, pearson_and_spearman, compute_metrics
processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mnli-mm": MnliMismatchedProcessor,
"mrpc": MrpcProcessor,
"sst-2": Sst2Processor,
"sts-b": StsbProcessor,
"qqp": QqpProcessor,
"qnli": QnliProcessor,
"rte": RteProcessor,
"wnli": WnliProcessor,
}
output_modes = {
"cola": "classification",
"mnli": "classification",
"mnli-mm": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
"qqp": "classification",
"qnli": "classification",
"rte": "classification",
"wnli": "classification",
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment