Unverified Commit b5e2b183 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Doc styler examples (#14953)

* Fix bad examples

* Add black formatting to style_doc

* Use first nonempty line

* Put it at the right place

* Don't add spaces to empty lines

* Better templates

* Deal with triple quotes in docstrings

* Result of style_doc

* Enable mdx treatment and fix code examples in MDXs

* Result of doc styler on doc source files

* Last fixes

* Break copy from
parent e13f72fb
...@@ -488,40 +488,60 @@ class TFGenerationMixin: ...@@ -488,40 +488,60 @@ class TFGenerationMixin:
Examples: Examples:
```python ```python
tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer tokenizer = AutoTokenizer.from_pretrained("distilgpt2") # Initialize tokenizer
model = TFAutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from huggingface.co and cache. model = TFAutoModelWithLMHead.from_pretrained(
"distilgpt2"
) # Download model and configuration from huggingface.co and cache.
outputs = model.generate(max_length=40) # do greedy decoding outputs = model.generate(max_length=40) # do greedy decoding
print(f'Generated: {tokenizer.decode(outputs[0], skip_special_tokens=True)}') print(f"Generated: {tokenizer.decode(outputs[0], skip_special_tokens=True)}")
tokenizer = AutoTokenizer.from_pretrained('openai-gpt') # Initialize tokenizer tokenizer = AutoTokenizer.from_pretrained("openai-gpt") # Initialize tokenizer
model = TFAutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from huggingface.co and cache. model = TFAutoModelWithLMHead.from_pretrained(
input_context = 'The dog' "openai-gpt"
input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context ) # Download model and configuration from huggingface.co and cache.
outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog' input_context = "The dog"
for i in range(3): # 3 output sequences were generated input_ids = tokenizer.encode(input_context, return_tensors="tf") # encode input context
print(f'Generated {i}: {tokenizer.decode(outputs[i], skip_special_tokens=True)}') outputs = model.generate(
input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5
tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer ) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog'
model = TFAutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from huggingface.co and cache. for i in range(3): # 3 output sequences were generated
input_context = 'The dog' print(f"Generated {i}: {tokenizer.decode(outputs[i], skip_special_tokens=True)}")
input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context
outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3, do_sample=True) # generate 3 candidates using sampling tokenizer = AutoTokenizer.from_pretrained("distilgpt2") # Initialize tokenizer
for i in range(3): # 3 output sequences were generated model = TFAutoModelWithLMHead.from_pretrained(
print(f'Generated {i}: {tokenizer.decode(outputs[i], skip_special_tokens=True)}') "distilgpt2"
) # Download model and configuration from huggingface.co and cache.
tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer input_context = "The dog"
model = TFAutoModelWithLMHead.from_pretrained('ctrl') # Download model and configuration from huggingface.co and cache. input_ids = tokenizer.encode(input_context, return_tensors="tf") # encode input context
input_context = 'Legal My neighbor is' # "Legal" is one of the control codes for ctrl outputs = model.generate(
input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3, do_sample=True
outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences ) # generate 3 candidates using sampling
print(f'Generated: {tokenizer.decode(outputs[0], skip_special_tokens=True)}') for i in range(3): # 3 output sequences were generated
print(f"Generated {i}: {tokenizer.decode(outputs[i], skip_special_tokens=True)}")
tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer
model = TFAutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from huggingface.co and cache. tokenizer = AutoTokenizer.from_pretrained("ctrl") # Initialize tokenizer
input_context = 'My cute dog' model = TFAutoModelWithLMHead.from_pretrained(
bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']] "ctrl"
input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context ) # Download model and configuration from huggingface.co and cache.
outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated input_context = "Legal My neighbor is" # "Legal" is one of the control codes for ctrl
input_ids = tokenizer.encode(input_context, return_tensors="tf") # encode input context
outputs = model.generate(
input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2
) # generate sequences
print(f"Generated: {tokenizer.decode(outputs[0], skip_special_tokens=True)}")
tokenizer = AutoTokenizer.from_pretrained("gpt2") # Initialize tokenizer
model = TFAutoModelWithLMHead.from_pretrained(
"gpt2"
) # Download model and configuration from huggingface.co and cache.
input_context = "My cute dog"
bad_words_ids = [
tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ["idiot", "stupid", "shut up"]
]
input_ids = tokenizer.encode(input_context, return_tensors="tf") # encode input context
outputs = model.generate(
input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids
) # generate sequences without allowing bad_words to be generated
```""" ```"""
# We cannot generate if the model does not have a LM head # We cannot generate if the model does not have a LM head
......
...@@ -939,8 +939,8 @@ class GenerationMixin: ...@@ -939,8 +939,8 @@ class GenerationMixin:
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base") >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> document = ( >>> document = (
... "at least two people were killed in a suspected bomb attack on a passenger bus " ... "at least two people were killed in a suspected bomb attack on a passenger bus "
... "in the strife-torn southern philippines on monday , the military said." ... "in the strife-torn southern philippines on monday , the military said."
... ) ... )
>>> # encode input context >>> # encode input context
>>> input_ids = tokenizer(document, return_tensors="pt").input_ids >>> input_ids = tokenizer(document, return_tensors="pt").input_ids
...@@ -1329,10 +1329,10 @@ class GenerationMixin: ...@@ -1329,10 +1329,10 @@ class GenerationMixin:
```python ```python
>>> from transformers import ( >>> from transformers import (
... AutoTokenizer, ... AutoTokenizer,
... AutoModelForCausalLM, ... AutoModelForCausalLM,
... LogitsProcessorList, ... LogitsProcessorList,
... MinLengthLogitsProcessor, ... MinLengthLogitsProcessor,
... ) ... )
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
...@@ -1345,9 +1345,11 @@ class GenerationMixin: ...@@ -1345,9 +1345,11 @@ class GenerationMixin:
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
>>> # instantiate logits processors >>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([ >>> logits_processor = LogitsProcessorList(
... MinLengthLogitsProcessor(15, eos_token_id=model.config.eos_token_id), ... [
... ]) ... MinLengthLogitsProcessor(15, eos_token_id=model.config.eos_token_id),
... ]
... )
>>> outputs = model.greedy_search(input_ids, logits_processor=logits_processor) >>> outputs = model.greedy_search(input_ids, logits_processor=logits_processor)
...@@ -1556,12 +1558,12 @@ class GenerationMixin: ...@@ -1556,12 +1558,12 @@ class GenerationMixin:
```python ```python
>>> from transformers import ( >>> from transformers import (
... AutoTokenizer, ... AutoTokenizer,
... AutoModelForCausalLM, ... AutoModelForCausalLM,
... LogitsProcessorList, ... LogitsProcessorList,
... MinLengthLogitsProcessor, ... MinLengthLogitsProcessor,
... TopKLogitsWarper, ... TopKLogitsWarper,
... TemperatureLogitsWarper, ... TemperatureLogitsWarper,
... ) ... )
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
...@@ -1574,14 +1576,18 @@ class GenerationMixin: ...@@ -1574,14 +1576,18 @@ class GenerationMixin:
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
>>> # instantiate logits processors >>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([ >>> logits_processor = LogitsProcessorList(
... MinLengthLogitsProcessor(15, eos_token_id=model.config.eos_token_id), ... [
... ]) ... MinLengthLogitsProcessor(15, eos_token_id=model.config.eos_token_id),
... ]
... )
>>> # instantiate logits processors >>> # instantiate logits processors
>>> logits_warper = LogitsProcessorList([ >>> logits_warper = LogitsProcessorList(
... TopKLogitsWarper(50), ... [
... TemperatureLogitsWarper(0.7), ... TopKLogitsWarper(50),
... ]) ... TemperatureLogitsWarper(0.7),
... ]
... )
>>> outputs = model.sample(input_ids, logits_processor=logits_processor, logits_warper=logits_warper) >>> outputs = model.sample(input_ids, logits_processor=logits_processor, logits_warper=logits_warper)
...@@ -1795,11 +1801,11 @@ class GenerationMixin: ...@@ -1795,11 +1801,11 @@ class GenerationMixin:
```python ```python
>>> from transformers import ( >>> from transformers import (
... AutoTokenizer, ... AutoTokenizer,
... AutoModelForSeq2SeqLM, ... AutoModelForSeq2SeqLM,
... LogitsProcessorList, ... LogitsProcessorList,
... MinLengthLogitsProcessor, ... MinLengthLogitsProcessor,
... BeamSearchScorer, ... BeamSearchScorer,
... ) ... )
>>> import torch >>> import torch
...@@ -1818,7 +1824,9 @@ class GenerationMixin: ...@@ -1818,7 +1824,9 @@ class GenerationMixin:
>>> # add encoder_outputs to model keyword arguments >>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = { >>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True) ... "encoder_outputs": model.get_encoder()(
... encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
... )
... } ... }
>>> # instantiate beam scorer >>> # instantiate beam scorer
...@@ -1829,9 +1837,11 @@ class GenerationMixin: ...@@ -1829,9 +1837,11 @@ class GenerationMixin:
... ) ... )
>>> # instantiate logits processors >>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([ >>> logits_processor = LogitsProcessorList(
... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id), ... [
... ]) ... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
... ]
... )
>>> outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs) >>> outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)
...@@ -2112,7 +2122,9 @@ class GenerationMixin: ...@@ -2112,7 +2122,9 @@ class GenerationMixin:
>>> # add encoder_outputs to model keyword arguments >>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = { >>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True) ... "encoder_outputs": model.get_encoder()(
... encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
... )
... } ... }
>>> # instantiate beam scorer >>> # instantiate beam scorer
...@@ -2124,14 +2136,16 @@ class GenerationMixin: ...@@ -2124,14 +2136,16 @@ class GenerationMixin:
... ) ... )
>>> # instantiate logits processors >>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([ >>> logits_processor = LogitsProcessorList(
... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id) ... [MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id)]
... ]) ... )
>>> # instantiate logits processors >>> # instantiate logits processors
>>> logits_warper = LogitsProcessorList([ >>> logits_warper = LogitsProcessorList(
... TopKLogitsWarper(50), ... [
... TemperatureLogitsWarper(0.7), ... TopKLogitsWarper(50),
... ]) ... TemperatureLogitsWarper(0.7),
... ]
... )
>>> outputs = model.beam_sample( >>> outputs = model.beam_sample(
... input_ids, beam_scorer, logits_processor=logits_processor, logits_warper=logits_warper, **model_kwargs ... input_ids, beam_scorer, logits_processor=logits_processor, logits_warper=logits_warper, **model_kwargs
...@@ -2384,12 +2398,12 @@ class GenerationMixin: ...@@ -2384,12 +2398,12 @@ class GenerationMixin:
```python ```python
>>> from transformers import ( >>> from transformers import (
... AutoTokenizer, ... AutoTokenizer,
... AutoModelForSeq2SeqLM, ... AutoModelForSeq2SeqLM,
... LogitsProcessorList, ... LogitsProcessorList,
... MinLengthLogitsProcessor, ... MinLengthLogitsProcessor,
... HammingDiversityLogitsProcessor, ... HammingDiversityLogitsProcessor,
... BeamSearchScorer, ... BeamSearchScorer,
... ) ... )
>>> import torch >>> import torch
...@@ -2408,7 +2422,9 @@ class GenerationMixin: ...@@ -2408,7 +2422,9 @@ class GenerationMixin:
>>> # add encoder_outputs to model keyword arguments >>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = { >>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True) ... "encoder_outputs": model.get_encoder()(
... encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
... )
... } ... }
>>> # instantiate beam scorer >>> # instantiate beam scorer
...@@ -2417,16 +2433,20 @@ class GenerationMixin: ...@@ -2417,16 +2433,20 @@ class GenerationMixin:
... max_length=model.config.max_length, ... max_length=model.config.max_length,
... num_beams=num_beams, ... num_beams=num_beams,
... device=model.device, ... device=model.device,
... num_beam_groups=3 ... num_beam_groups=3,
... ) ... )
>>> # instantiate logits processors >>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([ >>> logits_processor = LogitsProcessorList(
... HammingDiversityLogitsProcessor(5.5, num_beams=6, num_beam_groups=3), ... [
... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id), ... HammingDiversityLogitsProcessor(5.5, num_beams=6, num_beam_groups=3),
... ]) ... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
... ]
... )
>>> outputs = model.group_beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs) >>> outputs = model.group_beam_search(
... input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs
... )
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True)) >>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
```""" ```"""
......
...@@ -32,10 +32,12 @@ class KerasMetricCallback(Callback): ...@@ -32,10 +32,12 @@ class KerasMetricCallback(Callback):
```py ```py
from datasets import load_metric from datasets import load_metric
rouge_metric = load_metric("rouge") rouge_metric = load_metric("rouge")
def rouge_fn(predictions, labels): def rouge_fn(predictions, labels):
decoded_predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True)) decoded_predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
result = rouge_metric.compute(predictions=decoded_predictions, references=decoded_labels) result = rouge_metric.compute(predictions=decoded_predictions, references=decoded_labels)
return {key: value.mid.fmeasure * 100 for key, value in result.items()} return {key: value.mid.fmeasure * 100 for key, value in result.items()}
......
...@@ -168,10 +168,14 @@ class ModelCard: ...@@ -168,10 +168,14 @@ class ModelCard:
Examples: Examples:
```python ```python
modelcard = ModelCard.from_pretrained('bert-base-uncased') # Download model card from huggingface.co and cache. modelcard = ModelCard.from_pretrained(
modelcard = ModelCard.from_pretrained('./test/saved_model/') # E.g. model card was saved using *save_pretrained('./test/saved_model/')* "bert-base-uncased"
modelcard = ModelCard.from_pretrained('./test/saved_model/modelcard.json') ) # Download model card from huggingface.co and cache.
modelcard = ModelCard.from_pretrained('bert-base-uncased', output_attentions=True, foo=False) modelcard = ModelCard.from_pretrained(
"./test/saved_model/"
) # E.g. model card was saved using *save_pretrained('./test/saved_model/')*
modelcard = ModelCard.from_pretrained("./test/saved_model/modelcard.json")
modelcard = ModelCard.from_pretrained("bert-base-uncased", output_attentions=True, foo=False)
```""" ```"""
# This imports every model so let's do it dynamically here. # This imports every model so let's do it dynamically here.
from transformers.models.auto.configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP from transformers.models.auto.configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP
......
...@@ -200,16 +200,21 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin): ...@@ -200,16 +200,21 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
```python ```python
>>> from transformers import FlaxBertModel >>> from transformers import FlaxBertModel
>>> # load model >>> # load model
>>> model = FlaxBertModel.from_pretrained('bert-base-cased') >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
>>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision >>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision
>>> model.params = model.to_bf16(model.params) >>> model.params = model.to_bf16(model.params)
>>> # If you want don't want to cast certain parameters (for example layer norm bias and scale) >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale)
>>> # then pass the mask as follows >>> # then pass the mask as follows
>>> from flax import traverse_util >>> from flax import traverse_util
>>> model = FlaxBertModel.from_pretrained('bert-base-cased')
>>> model = FlaxBertModel.from_pretrained("bert-base-cased")
>>> flat_params = traverse_util.flatten_dict(model.params) >>> flat_params = traverse_util.flatten_dict(model.params)
>>> mask = {path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) for path in flat_params} >>> mask = {
... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
... for path in flat_params
... }
>>> mask = traverse_util.unflatten_dict(mask) >>> mask = traverse_util.unflatten_dict(mask)
>>> model.params = model.to_bf16(model.params, mask) >>> model.params = model.to_bf16(model.params, mask)
```""" ```"""
...@@ -231,8 +236,9 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin): ...@@ -231,8 +236,9 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
```python ```python
>>> from transformers import FlaxBertModel >>> from transformers import FlaxBertModel
>>> # Download model and configuration from huggingface.co >>> # Download model and configuration from huggingface.co
>>> model = FlaxBertModel.from_pretrained('bert-base-cased') >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
>>> # By default, the model params will be in fp32, to illustrate the use of this method, >>> # By default, the model params will be in fp32, to illustrate the use of this method,
>>> # we'll first cast to fp16 and back to fp32 >>> # we'll first cast to fp16 and back to fp32
>>> model.params = model.to_f16(model.params) >>> model.params = model.to_f16(model.params)
...@@ -260,16 +266,21 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin): ...@@ -260,16 +266,21 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
```python ```python
>>> from transformers import FlaxBertModel >>> from transformers import FlaxBertModel
>>> # load model >>> # load model
>>> model = FlaxBertModel.from_pretrained('bert-base-cased') >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
>>> # By default, the model params will be in fp32, to cast these to float16 >>> # By default, the model params will be in fp32, to cast these to float16
>>> model.params = model.to_fp16(model.params) >>> model.params = model.to_fp16(model.params)
>>> # If you want don't want to cast certain parameters (for example layer norm bias and scale) >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale)
>>> # then pass the mask as follows >>> # then pass the mask as follows
>>> from flax import traverse_util >>> from flax import traverse_util
>>> model = FlaxBertModel.from_pretrained('bert-base-cased')
>>> model = FlaxBertModel.from_pretrained("bert-base-cased")
>>> flat_params = traverse_util.flatten_dict(model.params) >>> flat_params = traverse_util.flatten_dict(model.params)
>>> mask = {path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) for path in flat_params} >>> mask = {
... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
... for path in flat_params
... }
>>> mask = traverse_util.unflatten_dict(mask) >>> mask = traverse_util.unflatten_dict(mask)
>>> model.params = model.to_fp16(model.params, mask) >>> model.params = model.to_fp16(model.params, mask)
```""" ```"""
...@@ -377,13 +388,14 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin): ...@@ -377,13 +388,14 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
```python ```python
>>> from transformers import BertConfig, FlaxBertModel >>> from transformers import BertConfig, FlaxBertModel
>>> # Download model and configuration from huggingface.co and cache. >>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxBertModel.from_pretrained('bert-base-cased') >>> model = FlaxBertModel.from_pretrained("bert-base-cased")
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
>>> model = FlaxBertModel.from_pretrained('./test/saved_model/') >>> model = FlaxBertModel.from_pretrained("./test/saved_model/")
>>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). >>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
>>> config = BertConfig.from_json_file('./pt_model/config.json') >>> config = BertConfig.from_json_file("./pt_model/config.json")
>>> model = FlaxBertModel.from_pretrained('./pt_model/pytorch_model.bin', from_pt=True, config=config) >>> model = FlaxBertModel.from_pretrained("./pt_model/pytorch_model.bin", from_pt=True, config=config)
```""" ```"""
config = kwargs.pop("config", None) config = kwargs.pop("config", None)
cache_dir = kwargs.pop("cache_dir", None) cache_dir = kwargs.pop("cache_dir", None)
......
...@@ -1460,16 +1460,17 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu ...@@ -1460,16 +1460,17 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
```python ```python
>>> from transformers import BertConfig, TFBertModel >>> from transformers import BertConfig, TFBertModel
>>> # Download model and configuration from huggingface.co and cache. >>> # Download model and configuration from huggingface.co and cache.
>>> model = TFBertModel.from_pretrained('bert-base-uncased') >>> model = TFBertModel.from_pretrained("bert-base-uncased")
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
>>> model = TFBertModel.from_pretrained('./test/saved_model/') >>> model = TFBertModel.from_pretrained("./test/saved_model/")
>>> # Update configuration during loading. >>> # Update configuration during loading.
>>> model = TFBertModel.from_pretrained('bert-base-uncased', output_attentions=True) >>> model = TFBertModel.from_pretrained("bert-base-uncased", output_attentions=True)
>>> assert model.config.output_attentions == True >>> assert model.config.output_attentions == True
>>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable). >>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable).
>>> config = BertConfig.from_json_file('./pt_model/my_pt_model_config.json') >>> config = BertConfig.from_json_file("./pt_model/my_pt_model_config.json")
>>> model = TFBertModel.from_pretrained('./pt_model/my_pytorch_model.bin', from_pt=True, config=config) >>> model = TFBertModel.from_pretrained("./pt_model/my_pytorch_model.bin", from_pt=True, config=config)
```""" ```"""
config = kwargs.pop("config", None) config = kwargs.pop("config", None)
cache_dir = kwargs.pop("cache_dir", None) cache_dir = kwargs.pop("cache_dir", None)
......
...@@ -1211,18 +1211,19 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix ...@@ -1211,18 +1211,19 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
```python ```python
>>> from transformers import BertConfig, BertModel >>> from transformers import BertConfig, BertModel
>>> # Download model and configuration from huggingface.co and cache. >>> # Download model and configuration from huggingface.co and cache.
>>> model = BertModel.from_pretrained('bert-base-uncased') >>> model = BertModel.from_pretrained("bert-base-uncased")
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
>>> model = BertModel.from_pretrained('./test/saved_model/') >>> model = BertModel.from_pretrained("./test/saved_model/")
>>> # Update configuration during loading. >>> # Update configuration during loading.
>>> model = BertModel.from_pretrained('bert-base-uncased', output_attentions=True) >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
>>> assert model.config.output_attentions == True >>> assert model.config.output_attentions == True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
>>> config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
>>> model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
>>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower) >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
>>> model = BertModel.from_pretrained('bert-base-uncased', from_flax=True) >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
```""" ```"""
config = kwargs.pop("config", None) config = kwargs.pop("config", None)
state_dict = kwargs.pop("state_dict", None) state_dict = kwargs.pop("state_dict", None)
...@@ -2320,6 +2321,7 @@ def apply_chunking_to_forward( ...@@ -2320,6 +2321,7 @@ def apply_chunking_to_forward(
hidden_states = self.decoder(hidden_states) hidden_states = self.decoder(hidden_states)
return hidden_states return hidden_states
# implement a chunked forward function # implement a chunked forward function
def forward(self, hidden_states): def forward(self, hidden_states):
return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
......
...@@ -90,15 +90,16 @@ class AlbertConfig(PretrainedConfig): ...@@ -90,15 +90,16 @@ class AlbertConfig(PretrainedConfig):
```python ```python
>>> from transformers import AlbertConfig, AlbertModel >>> from transformers import AlbertConfig, AlbertModel
>>> # Initializing an ALBERT-xxlarge style configuration >>> # Initializing an ALBERT-xxlarge style configuration
>>> albert_xxlarge_configuration = AlbertConfig() >>> albert_xxlarge_configuration = AlbertConfig()
>>> # Initializing an ALBERT-base style configuration >>> # Initializing an ALBERT-base style configuration
>>> albert_base_configuration = AlbertConfig( >>> albert_base_configuration = AlbertConfig(
... hidden_size=768, ... hidden_size=768,
... num_attention_heads=12, ... num_attention_heads=12,
... intermediate_size=3072, ... intermediate_size=3072,
... ) ... )
>>> # Initializing a model from the ALBERT-base style configuration >>> # Initializing a model from the ALBERT-base style configuration
>>> model = AlbertModel(albert_xxlarge_configuration) >>> model = AlbertModel(albert_xxlarge_configuration)
......
...@@ -802,10 +802,12 @@ class AlbertForPreTraining(AlbertPreTrainedModel): ...@@ -802,10 +802,12 @@ class AlbertForPreTraining(AlbertPreTrainedModel):
>>> from transformers import AlbertTokenizer, AlbertForPreTraining >>> from transformers import AlbertTokenizer, AlbertForPreTraining
>>> import torch >>> import torch
>>> tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') >>> tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
>>> model = AlbertForPreTraining.from_pretrained('albert-base-v2') >>> model = AlbertForPreTraining.from_pretrained("albert-base-v2")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0
>>> ) # Batch size 1
>>> outputs = model(input_ids) >>> outputs = model(input_ids)
>>> prediction_logits = outputs.prediction_logits >>> prediction_logits = outputs.prediction_logits
......
...@@ -748,8 +748,8 @@ FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING = """ ...@@ -748,8 +748,8 @@ FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING = """
```python ```python
>>> from transformers import AlbertTokenizer, FlaxAlbertForPreTraining >>> from transformers import AlbertTokenizer, FlaxAlbertForPreTraining
>>> tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') >>> tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
>>> model = FlaxAlbertForPreTraining.from_pretrained('albert-base-v2') >>> model = FlaxAlbertForPreTraining.from_pretrained("albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
......
...@@ -892,10 +892,12 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss): ...@@ -892,10 +892,12 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
>>> import tensorflow as tf >>> import tensorflow as tf
>>> from transformers import AlbertTokenizer, TFAlbertForPreTraining >>> from transformers import AlbertTokenizer, TFAlbertForPreTraining
>>> tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') >>> tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
>>> model = TFAlbertForPreTraining.from_pretrained('albert-base-v2') >>> model = TFAlbertForPreTraining.from_pretrained("albert-base-v2")
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[
... None, :
>>> ] # Batch size 1
>>> outputs = model(input_ids) >>> outputs = model(input_ids)
>>> prediction_logits = outputs.prediction_logits >>> prediction_logits = outputs.prediction_logits
......
...@@ -51,8 +51,9 @@ FROM_CONFIG_DOCSTRING = """ ...@@ -51,8 +51,9 @@ FROM_CONFIG_DOCSTRING = """
```python ```python
>>> from transformers import AutoConfig, BaseAutoModelClass >>> from transformers import AutoConfig, BaseAutoModelClass
>>> # Download configuration from huggingface.co and cache. >>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('checkpoint_placeholder') >>> config = AutoConfig.from_pretrained("checkpoint_placeholder")
>>> model = BaseAutoModelClass.from_config(config) >>> model = BaseAutoModelClass.from_config(config)
``` ```
""" """
...@@ -147,16 +148,18 @@ FROM_PRETRAINED_TORCH_DOCSTRING = """ ...@@ -147,16 +148,18 @@ FROM_PRETRAINED_TORCH_DOCSTRING = """
>>> from transformers import AutoConfig, BaseAutoModelClass >>> from transformers import AutoConfig, BaseAutoModelClass
>>> # Download model and configuration from huggingface.co and cache. >>> # Download model and configuration from huggingface.co and cache.
>>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder') >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")
>>> # Update configuration during loading >>> # Update configuration during loading
>>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True) >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
>>> model.config.output_attentions >>> model.config.output_attentions
True True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained('./tf_model/shortcut_placeholder_tf_model_config.json') >>> config = AutoConfig.from_pretrained("./tf_model/shortcut_placeholder_tf_model_config.json")
>>> model = BaseAutoModelClass.from_pretrained('./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index', from_tf=True, config=config) >>> model = BaseAutoModelClass.from_pretrained(
... "./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )
``` ```
""" """
...@@ -241,16 +244,18 @@ FROM_PRETRAINED_TF_DOCSTRING = """ ...@@ -241,16 +244,18 @@ FROM_PRETRAINED_TF_DOCSTRING = """
>>> from transformers import AutoConfig, BaseAutoModelClass >>> from transformers import AutoConfig, BaseAutoModelClass
>>> # Download model and configuration from huggingface.co and cache. >>> # Download model and configuration from huggingface.co and cache.
>>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder') >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")
>>> # Update configuration during loading >>> # Update configuration during loading
>>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True) >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
>>> model.config.output_attentions >>> model.config.output_attentions
True True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained('./pt_model/shortcut_placeholder_pt_model_config.json') >>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json")
>>> model = BaseAutoModelClass.from_pretrained('./pt_model/shortcut_placeholder_pytorch_model.bin', from_pt=True, config=config) >>> model = BaseAutoModelClass.from_pretrained(
... "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config
... )
``` ```
""" """
...@@ -335,16 +340,18 @@ FROM_PRETRAINED_FLAX_DOCSTRING = """ ...@@ -335,16 +340,18 @@ FROM_PRETRAINED_FLAX_DOCSTRING = """
>>> from transformers import AutoConfig, BaseAutoModelClass >>> from transformers import AutoConfig, BaseAutoModelClass
>>> # Download model and configuration from huggingface.co and cache. >>> # Download model and configuration from huggingface.co and cache.
>>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder') >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")
>>> # Update configuration during loading >>> # Update configuration during loading
>>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True) >>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
>>> model.config.output_attentions >>> model.config.output_attentions
True True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained('./pt_model/shortcut_placeholder_pt_model_config.json') >>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json")
>>> model = BaseAutoModelClass.from_pretrained('./pt_model/shortcut_placeholder_pytorch_model.bin', from_pt=True, config=config) >>> model = BaseAutoModelClass.from_pretrained(
... "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config
... )
``` ```
""" """
......
...@@ -555,24 +555,28 @@ class AutoConfig: ...@@ -555,24 +555,28 @@ class AutoConfig:
>>> from transformers import AutoConfig >>> from transformers import AutoConfig
>>> # Download configuration from huggingface.co and cache. >>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased') >>> config = AutoConfig.from_pretrained("bert-base-uncased")
>>> # Download configuration from huggingface.co (user-uploaded) and cache. >>> # Download configuration from huggingface.co (user-uploaded) and cache.
>>> config = AutoConfig.from_pretrained('dbmdz/bert-base-german-cased') >>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased")
>>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*). >>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*).
>>> config = AutoConfig.from_pretrained('./test/bert_saved_model/') >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/")
>>> # Load a specific configuration file. >>> # Load a specific configuration file.
>>> config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json') >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json")
>>> # Change some config attributes when loading a pretrained config. >>> # Change some config attributes when loading a pretrained config.
>>> config = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False) >>> config = AutoConfig.from_pretrained("bert-base-uncased", output_attentions=True, foo=False)
>>> config.output_attentions >>> config.output_attentions
True True
>>> config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True)
>>> config, unused_kwargs = AutoConfig.from_pretrained(
... "bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
... )
>>> config.output_attentions >>> config.output_attentions
True True
>>> config.unused_kwargs >>> config.unused_kwargs
{'foo': False} {'foo': False}
```""" ```"""
......
...@@ -141,10 +141,10 @@ class AutoFeatureExtractor: ...@@ -141,10 +141,10 @@ class AutoFeatureExtractor:
>>> from transformers import AutoFeatureExtractor >>> from transformers import AutoFeatureExtractor
>>> # Download feature extractor from huggingface.co and cache. >>> # Download feature extractor from huggingface.co and cache.
>>> feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h') >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # If feature extractor files are in a directory (e.g. feature extractor was saved using *save_pretrained('./test/saved_model/')*) >>> # If feature extractor files are in a directory (e.g. feature extractor was saved using *save_pretrained('./test/saved_model/')*)
>>> feature_extractor = AutoFeatureExtractor.from_pretrained('./test/saved_model/') >>> feature_extractor = AutoFeatureExtractor.from_pretrained("./test/saved_model/")
```""" ```"""
config = kwargs.pop("config", None) config = kwargs.pop("config", None)
kwargs["_from_auto"] = True kwargs["_from_auto"] = True
......
...@@ -134,10 +134,10 @@ class AutoProcessor: ...@@ -134,10 +134,10 @@ class AutoProcessor:
>>> from transformers import AutoProcessor >>> from transformers import AutoProcessor
>>> # Download processor from huggingface.co and cache. >>> # Download processor from huggingface.co and cache.
>>> processor = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h') >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*) >>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*)
>>> processor = AutoProcessor.from_pretrained('./test/saved_model/') >>> processor = AutoProcessor.from_pretrained("./test/saved_model/")
```""" ```"""
config = kwargs.pop("config", None) config = kwargs.pop("config", None)
kwargs["_from_auto"] = True kwargs["_from_auto"] = True
......
...@@ -451,13 +451,13 @@ class AutoTokenizer: ...@@ -451,13 +451,13 @@ class AutoTokenizer:
>>> from transformers import AutoTokenizer >>> from transformers import AutoTokenizer
>>> # Download vocabulary from huggingface.co and cache. >>> # Download vocabulary from huggingface.co and cache.
>>> tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> # Download vocabulary from huggingface.co (user-uploaded) and cache. >>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
>>> tokenizer = AutoTokenizer.from_pretrained('dbmdz/bert-base-german-cased') >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
>>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
>>> tokenizer = AutoTokenizer.from_pretrained('./test/bert_saved_model/') >>> tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/")
```""" ```"""
config = kwargs.pop("config", None) config = kwargs.pop("config", None)
kwargs["_from_auto"] = True kwargs["_from_auto"] = True
......
...@@ -1779,8 +1779,8 @@ class BartForCausalLM(BartPretrainedModel): ...@@ -1779,8 +1779,8 @@ class BartForCausalLM(BartPretrainedModel):
```python ```python
>>> from transformers import BartTokenizer, BartForCausalLM >>> from transformers import BartTokenizer, BartForCausalLM
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
>>> model = BartForCausalLM.from_pretrained('facebook/bart-large', add_cross_attention=False) >>> model = BartForCausalLM.from_pretrained("facebook/bart-large", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
......
...@@ -1021,11 +1021,11 @@ class FlaxBartPreTrainedModel(FlaxPreTrainedModel): ...@@ -1021,11 +1021,11 @@ class FlaxBartPreTrainedModel(FlaxPreTrainedModel):
```python ```python
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration >>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') >>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') >>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs." >>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors='jax') >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs) >>> encoder_outputs = model.encode(**inputs)
```""" ```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
...@@ -1087,11 +1087,11 @@ class FlaxBartPreTrainedModel(FlaxPreTrainedModel): ...@@ -1087,11 +1087,11 @@ class FlaxBartPreTrainedModel(FlaxPreTrainedModel):
```python ```python
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration >>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') >>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') >>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs." >>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors='jax') >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs) >>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_start_token_id = model.config.decoder_start_token_id
...@@ -1355,11 +1355,11 @@ class FlaxBartForConditionalGeneration(FlaxBartPreTrainedModel): ...@@ -1355,11 +1355,11 @@ class FlaxBartForConditionalGeneration(FlaxBartPreTrainedModel):
```python ```python
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration >>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') >>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') >>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs." >>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors='jax') >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs) >>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_start_token_id = model.config.decoder_start_token_id
......
...@@ -633,11 +633,11 @@ class BeitModel(BeitPreTrainedModel): ...@@ -633,11 +633,11 @@ class BeitModel(BeitPreTrainedModel):
>>> from PIL import Image >>> from PIL import Image
>>> import requests >>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw) >>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k') >>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> model = BeitModel.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k') >>> model = BeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> inputs = feature_extractor(images=image, return_tensors="pt") >>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
...@@ -750,11 +750,11 @@ class BeitForMaskedImageModeling(BeitPreTrainedModel): ...@@ -750,11 +750,11 @@ class BeitForMaskedImageModeling(BeitPreTrainedModel):
>>> from PIL import Image >>> from PIL import Image
>>> import requests >>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw) >>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k') >>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k') >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> inputs = feature_extractor(images=image, return_tensors="pt") >>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
...@@ -838,11 +838,11 @@ class BeitForImageClassification(BeitPreTrainedModel): ...@@ -838,11 +838,11 @@ class BeitForImageClassification(BeitPreTrainedModel):
>>> from PIL import Image >>> from PIL import Image
>>> import requests >>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw) >>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224') >>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224")
>>> model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224') >>> model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
>>> inputs = feature_extractor(images=image, return_tensors="pt") >>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
...@@ -1172,11 +1172,11 @@ class BeitForSemanticSegmentation(BeitPreTrainedModel): ...@@ -1172,11 +1172,11 @@ class BeitForSemanticSegmentation(BeitPreTrainedModel):
>>> from PIL import Image >>> from PIL import Image
>>> import requests >>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw) >>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-finetuned-ade-640-640') >>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640') >>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> inputs = feature_extractor(images=image, return_tensors="pt") >>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
......
...@@ -735,11 +735,11 @@ FLAX_BEIT_MODEL_DOCSTRING = """ ...@@ -735,11 +735,11 @@ FLAX_BEIT_MODEL_DOCSTRING = """
>>> from PIL import Image >>> from PIL import Image
>>> import requests >>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw) >>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k') >>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> model = FlaxBeitModel.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k') >>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> inputs = feature_extractor(images=image, return_tensors="np") >>> inputs = feature_extractor(images=image, return_tensors="np")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
...@@ -822,11 +822,11 @@ FLAX_BEIT_MLM_DOCSTRING = """ ...@@ -822,11 +822,11 @@ FLAX_BEIT_MLM_DOCSTRING = """
>>> from PIL import Image >>> from PIL import Image
>>> import requests >>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw) >>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k') >>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k') >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> inputs = feature_extractor(images=image, return_tensors="np") >>> inputs = feature_extractor(images=image, return_tensors="np")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
...@@ -906,11 +906,11 @@ FLAX_BEIT_CLASSIF_DOCSTRING = """ ...@@ -906,11 +906,11 @@ FLAX_BEIT_CLASSIF_DOCSTRING = """
>>> from PIL import Image >>> from PIL import Image
>>> import requests >>> import requests
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw) >>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224') >>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224")
>>> model = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224') >>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
>>> inputs = feature_extractor(images=image, return_tensors="np") >>> inputs = feature_extractor(images=image, return_tensors="np")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment