Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
b3261e7a
Commit
b3261e7a
authored
Oct 11, 2019
by
Rémi Louf
Browse files
read parameters from CLI, load model & tokenizer
parent
d889e0b7
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
48 additions
and
59 deletions
+48
-59
examples/run_seq2seq_finetuning.py
examples/run_seq2seq_finetuning.py
+48
-10
examples/run_summarization.py
examples/run_summarization.py
+0
-49
No files found.
examples/run_seq2seq_finetuning.py
View file @
b3261e7a
...
...
@@ -30,12 +30,15 @@ Gao, Ming Zhou, and Hsiao-Wuen Hon. “Unified Language Model Pre-Training for
Natural Language Understanding and Generation.” (May 2019) ArXiv:1905.03197
"""
import
argparse
import
logging
import
random
import
numpy
as
np
import
torch
from
transformers
import
BertConfig
,
Bert2Rnd
,
BertTokenizer
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -43,25 +46,60 @@ def set_seed(args):
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
if
args
.
n_gpu
>
0
:
torch
.
cuda
.
manual_seed_all
(
args
.
seed
)
def
train
(
args
,
train_dataset
,
model
,
tokenizer
):
""" Fine-tune the pretrained model on the corpus. """
# Data sampler
# Data loader
# Training
def
load_and_cache_examples
(
args
,
tokenizer
):
raise
NotImplementedError
def
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
""
):
def
train
(
args
,
train_dataset
,
model
,
tokenizer
):
""" Fine-tune the pretrained model on the corpus. """
raise
NotImplementedError
def
main
():
raise
NotImplementedError
parser
=
argparse
.
ArgumentParser
()
# Required parameters
parser
.
add_argument
(
"--train_data_file"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The input training data file (a text file)."
)
parser
.
add_argument
(
"--output_dir"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The output directory where the model predictions and checkpoints will be written."
)
# Optional parameters
parser
.
add_argument
(
"--model_name_or_path"
,
default
=
"bert-base-cased"
,
type
=
str
,
help
=
"The model checkpoint for weights initialization."
)
parser
.
add_argument
(
"--seed"
,
default
=
42
,
type
=
int
)
args
=
parser
.
parse_args
()
# Set up training device
device
=
torch
.
device
(
"cpu"
)
# Set seed
set_seed
(
args
)
# Load pretrained model and tokenizer
config_class
,
model_class
,
tokenizer_class
=
BertConfig
,
Bert2Rnd
,
BertTokenizer
config
=
config_class
.
from_pretrained
(
args
.
model_name_or_path
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
model_name_or_path
)
model
=
model_class
.
from_pretrained
(
args
.
model_name_or_path
,
config
=
config
)
model
.
to
(
device
)
logger
.
info
(
"Training/evaluation parameters %s"
,
args
)
# Training
train_dataset
=
load_and_cache_examples
(
args
,
tokenizer
)
global_step
,
tr_loss
=
train
(
args
,
train_dataset
,
model
,
tokenizer
)
logger
.
info
(
" global_step = %s, average loss = %s"
,
global_step
,
tr_loss
)
def
__main__
()
:
if
__name__
==
"
__main__
"
:
main
()
examples/run_summarization.py
deleted
100644 → 0
View file @
d889e0b7
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning seq2seq models for abstractive summarization.
The finetuning method for abstractive summarization is inspired by [1]. We
concatenate the document and summary, mask words of the summary at random and
maximizing the likelihood of masked words.
[1] Dong Li, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. “Unified Language Model Pre-Training for
Natural Language Understanding and Generation.” (May 2019) ArXiv:1905.03197
"""
import
logging
import
random
import
numpy
as
np
import
torch
logger
=
logging
.
getLogger
(
__name__
)
def
set_seed
(
args
):
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
if
args
.
n_gpu
>
0
:
torch
.
cuda
.
manual_seed_all
(
args
.
seed
)
def
train
(
args
,
train_dataset
,
model
,
tokenizer
):
raise
NotImplementedError
def
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
""
):
raise
NotImplementedError
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment