Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
b219029c
Commit
b219029c
authored
Aug 11, 2019
by
erenup
Browse files
refactoring old run_swag. This script is mainly refatored from run_squad in pytorch_transformers
parent
70607664
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
400 additions
and
282 deletions
+400
-282
examples/single_model_scripts/run_swag.py
examples/single_model_scripts/run_swag.py
+400
-282
No files found.
examples/single_model_scripts/run_swag.py
View file @
b219029c
...
@@ -13,17 +13,18 @@
...
@@ -13,17 +13,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""BERT finetuning runner."""
"""BERT finetuning runner.
Finetuning the library models for multiple choice on SWAG (Bert).
from
__future__
import
absolute_import
"""
from
__future__
import
absolute_import
,
division
,
print_function
import
argparse
import
argparse
import
csv
import
logging
import
logging
import
csv
import
os
import
os
import
random
import
random
import
sys
import
sys
from
io
import
open
import
glob
import
numpy
as
np
import
numpy
as
np
import
torch
import
torch
...
@@ -32,16 +33,21 @@ from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
...
@@ -32,16 +33,21 @@ from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
from
torch.utils.data.distributed
import
DistributedSampler
from
torch.utils.data.distributed
import
DistributedSampler
from
tqdm
import
tqdm
,
trange
from
tqdm
import
tqdm
,
trange
from
pytorch_transformers.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
,
WEIGHTS_NAME
,
CONFIG_NAME
from
tensorboardX
import
SummaryWriter
from
pytorch_transformers.modeling_bert
import
BertForMultipleChoice
,
BertConfig
from
pytorch_transformers.optimization
import
AdamW
,
WarmupLinearSchedule
from
pytorch_transformers
import
(
WEIGHTS_NAME
,
BertConfig
,
from
pytorch_transformers.tokenization_bert
import
BertTokenizer
BertForMultipleChoice
,
BertTokenizer
)
from
pytorch_transformers
import
AdamW
,
WarmupLinearSchedule
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
level
=
logging
.
INFO
)
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
ALL_MODELS
=
sum
((
tuple
(
conf
.
pretrained_config_archive_map
.
keys
())
\
for
conf
in
[
BertConfig
]),
())
MODEL_CLASSES
=
{
'bert'
:
(
BertConfig
,
BertForMultipleChoice
,
BertTokenizer
),
}
class
SwagExample
(
object
):
class
SwagExample
(
object
):
"""A single training/test example for the SWAG dataset."""
"""A single training/test example for the SWAG dataset."""
...
@@ -84,7 +90,6 @@ class SwagExample(object):
...
@@ -84,7 +90,6 @@ class SwagExample(object):
return
", "
.
join
(
l
)
return
", "
.
join
(
l
)
class
InputFeatures
(
object
):
class
InputFeatures
(
object
):
def
__init__
(
self
,
def
__init__
(
self
,
example_id
,
example_id
,
...
@@ -103,8 +108,7 @@ class InputFeatures(object):
...
@@ -103,8 +108,7 @@ class InputFeatures(object):
]
]
self
.
label
=
label
self
.
label
=
label
def
read_swag_examples
(
input_file
,
is_training
=
True
):
def
read_swag_examples
(
input_file
,
is_training
):
with
open
(
input_file
,
'r'
,
encoding
=
'utf-8'
)
as
f
:
with
open
(
input_file
,
'r'
,
encoding
=
'utf-8'
)
as
f
:
reader
=
csv
.
reader
(
f
)
reader
=
csv
.
reader
(
f
)
lines
=
[]
lines
=
[]
...
@@ -156,7 +160,7 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
...
@@ -156,7 +160,7 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length,
# final decision of the model, we will run a softmax over these 4
# final decision of the model, we will run a softmax over these 4
# outputs.
# outputs.
features
=
[]
features
=
[]
for
example_index
,
example
in
enumerate
(
examples
):
for
example_index
,
example
in
tqdm
(
enumerate
(
examples
)
)
:
context_tokens
=
tokenizer
.
tokenize
(
example
.
context_sentence
)
context_tokens
=
tokenizer
.
tokenize
(
example
.
context_sentence
)
start_ending_tokens
=
tokenizer
.
tokenize
(
example
.
start_ending
)
start_ending_tokens
=
tokenizer
.
tokenize
(
example
.
start_ending
)
...
@@ -242,314 +246,428 @@ def select_field(features, field):
...
@@ -242,314 +246,428 @@ def select_field(features, field):
for
feature
in
features
for
feature
in
features
]
]
def
set_seed
(
args
):
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
if
args
.
n_gpu
>
0
:
torch
.
cuda
.
manual_seed_all
(
args
.
seed
)
def
load_and_cache_examples
(
args
,
tokenizer
,
evaluate
=
False
,
output_examples
=
False
):
if
args
.
local_rank
not
in
[
-
1
,
0
]:
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
input_file
=
args
.
predict_file
if
evaluate
else
args
.
train_file
cached_features_file
=
os
.
path
.
join
(
os
.
path
.
dirname
(
input_file
),
'cached_{}_{}_{}'
.
format
(
'dev'
if
evaluate
else
'train'
,
list
(
filter
(
None
,
args
.
model_name_or_path
.
split
(
'/'
))).
pop
(),
str
(
args
.
max_seq_length
)))
if
os
.
path
.
exists
(
cached_features_file
)
and
not
args
.
overwrite_cache
and
not
output_examples
:
logger
.
info
(
"Loading features from cached file %s"
,
cached_features_file
)
features
=
torch
.
load
(
cached_features_file
)
else
:
logger
.
info
(
"Creating features from dataset file at %s"
,
input_file
)
examples
=
read_swag_examples
(
input_file
)
features
=
convert_examples_to_features
(
examples
,
tokenizer
,
args
.
max_seq_length
,
not
evaluate
)
if
args
.
local_rank
in
[
-
1
,
0
]:
logger
.
info
(
"Saving features into cached file %s"
,
cached_features_file
)
torch
.
save
(
features
,
cached_features_file
)
if
args
.
local_rank
==
0
:
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids
=
torch
.
tensor
(
select_field
(
features
,
'input_ids'
),
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
(
select_field
(
features
,
'input_mask'
),
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
(
select_field
(
features
,
'segment_ids'
),
dtype
=
torch
.
long
)
all_label
=
torch
.
tensor
([
f
.
label
for
f
in
features
],
dtype
=
torch
.
long
)
if
evaluate
:
dataset
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_label
)
else
:
dataset
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_label
)
if
output_examples
:
return
dataset
,
examples
,
features
return
dataset
def
train
(
args
,
train_dataset
,
model
,
tokenizer
):
""" Train the model """
if
args
.
local_rank
in
[
-
1
,
0
]:
tb_writer
=
SummaryWriter
()
args
.
train_batch_size
=
args
.
per_gpu_train_batch_size
*
max
(
1
,
args
.
n_gpu
)
train_sampler
=
RandomSampler
(
train_dataset
)
if
args
.
local_rank
==
-
1
else
DistributedSampler
(
train_dataset
)
train_dataloader
=
DataLoader
(
train_dataset
,
sampler
=
train_sampler
,
batch_size
=
args
.
train_batch_size
)
if
args
.
max_steps
>
0
:
t_total
=
args
.
max_steps
args
.
num_train_epochs
=
args
.
max_steps
//
(
len
(
train_dataloader
)
//
args
.
gradient_accumulation_steps
)
+
1
else
:
t_total
=
len
(
train_dataloader
)
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay
=
[
'bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
model
.
named_parameters
()
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
args
.
weight_decay
},
{
'params'
:
[
p
for
n
,
p
in
model
.
named_parameters
()
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
optimizer
=
AdamW
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
eps
=
args
.
adam_epsilon
)
scheduler
=
WarmupLinearSchedule
(
optimizer
,
warmup_steps
=
args
.
warmup_steps
,
t_total
=
t_total
)
if
args
.
fp16
:
try
:
from
apex
import
amp
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
)
model
,
optimizer
=
amp
.
initialize
(
model
,
optimizer
,
opt_level
=
args
.
fp16_opt_level
)
# multi-gpu training (should be after apex fp16 initialization)
if
args
.
n_gpu
>
1
:
model
=
torch
.
nn
.
DataParallel
(
model
)
# Distributed training (should be after apex fp16 initialization)
if
args
.
local_rank
!=
-
1
:
model
=
torch
.
nn
.
parallel
.
DistributedDataParallel
(
model
,
device_ids
=
[
args
.
local_rank
],
output_device
=
args
.
local_rank
,
find_unused_parameters
=
True
)
# Train!
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
" Num examples = %d"
,
len
(
train_dataset
))
logger
.
info
(
" Num Epochs = %d"
,
args
.
num_train_epochs
)
logger
.
info
(
" Instantaneous batch size per GPU = %d"
,
args
.
per_gpu_train_batch_size
)
logger
.
info
(
" Total train batch size (w. parallel, distributed & accumulation) = %d"
,
args
.
train_batch_size
*
args
.
gradient_accumulation_steps
*
(
torch
.
distributed
.
get_world_size
()
if
args
.
local_rank
!=
-
1
else
1
))
logger
.
info
(
" Gradient Accumulation steps = %d"
,
args
.
gradient_accumulation_steps
)
logger
.
info
(
" Total optimization steps = %d"
,
t_total
)
global_step
=
0
tr_loss
,
logging_loss
=
0.0
,
0.0
model
.
zero_grad
()
train_iterator
=
trange
(
int
(
args
.
num_train_epochs
),
desc
=
"Epoch"
,
disable
=
args
.
local_rank
not
in
[
-
1
,
0
])
set_seed
(
args
)
# Added here for reproductibility (even between python 2 and 3)
for
_
in
train_iterator
:
epoch_iterator
=
tqdm
(
train_dataloader
,
desc
=
"Iteration"
,
disable
=
args
.
local_rank
not
in
[
-
1
,
0
])
for
step
,
batch
in
enumerate
(
epoch_iterator
):
model
.
train
()
batch
=
tuple
(
t
.
to
(
args
.
device
)
for
t
in
batch
)
inputs
=
{
'input_ids'
:
batch
[
0
],
'attention_mask'
:
batch
[
1
],
#'token_type_ids': None if args.model_type == 'xlm' else batch[2],
'token_type_ids'
:
batch
[
2
],
'labels'
:
batch
[
3
]}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[5],
# 'p_mask': batch[6]})
outputs
=
model
(
**
inputs
)
loss
=
outputs
[
0
]
# model outputs are always tuple in pytorch-transformers (see doc)
if
args
.
n_gpu
>
1
:
loss
=
loss
.
mean
()
# mean() to average on multi-gpu parallel (not distributed) training
if
args
.
gradient_accumulation_steps
>
1
:
loss
=
loss
/
args
.
gradient_accumulation_steps
if
args
.
fp16
:
with
amp
.
scale_loss
(
loss
,
optimizer
)
as
scaled_loss
:
scaled_loss
.
backward
()
torch
.
nn
.
utils
.
clip_grad_norm_
(
amp
.
master_params
(
optimizer
),
args
.
max_grad_norm
)
else
:
loss
.
backward
()
torch
.
nn
.
utils
.
clip_grad_norm_
(
model
.
parameters
(),
args
.
max_grad_norm
)
tr_loss
+=
loss
.
item
()
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
optimizer
.
step
()
scheduler
.
step
()
# Update learning rate schedule
model
.
zero_grad
()
global_step
+=
1
if
args
.
local_rank
in
[
-
1
,
0
]
and
args
.
logging_steps
>
0
and
global_step
%
args
.
logging_steps
==
0
:
# Log metrics
if
args
.
local_rank
==
-
1
and
args
.
evaluate_during_training
:
# Only evaluate when single GPU otherwise metrics may not average well
results
=
evaluate
(
args
,
model
,
tokenizer
)
for
key
,
value
in
results
.
items
():
tb_writer
.
add_scalar
(
'eval_{}'
.
format
(
key
),
value
,
global_step
)
tb_writer
.
add_scalar
(
'lr'
,
scheduler
.
get_lr
()[
0
],
global_step
)
tb_writer
.
add_scalar
(
'loss'
,
(
tr_loss
-
logging_loss
)
/
args
.
logging_steps
,
global_step
)
logging_loss
=
tr_loss
if
args
.
local_rank
in
[
-
1
,
0
]
and
args
.
save_steps
>
0
and
global_step
%
args
.
save_steps
==
0
:
# Save model checkpoint
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
'checkpoint-{}'
.
format
(
global_step
))
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
)
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Take care of distributed/parallel training
model_to_save
.
save_pretrained
(
output_dir
)
tokenizer
.
save_vocabulary
(
output_dir
)
torch
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
'training_args.bin'
))
logger
.
info
(
"Saving model checkpoint to %s"
,
output_dir
)
if
args
.
max_steps
>
0
and
global_step
>
args
.
max_steps
:
epoch_iterator
.
close
()
break
if
args
.
max_steps
>
0
and
global_step
>
args
.
max_steps
:
train_iterator
.
close
()
break
if
args
.
local_rank
in
[
-
1
,
0
]:
tb_writer
.
close
()
return
global_step
,
tr_loss
/
global_step
def
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
""
):
dataset
,
examples
,
features
=
load_and_cache_examples
(
args
,
tokenizer
,
evaluate
=
True
,
output_examples
=
True
)
if
not
os
.
path
.
exists
(
args
.
output_dir
)
and
args
.
local_rank
in
[
-
1
,
0
]:
os
.
makedirs
(
args
.
output_dir
)
args
.
eval_batch_size
=
args
.
per_gpu_eval_batch_size
*
max
(
1
,
args
.
n_gpu
)
# Note that DistributedSampler samples randomly
eval_sampler
=
SequentialSampler
(
dataset
)
if
args
.
local_rank
==
-
1
else
DistributedSampler
(
dataset
)
eval_dataloader
=
DataLoader
(
dataset
,
sampler
=
eval_sampler
,
batch_size
=
args
.
eval_batch_size
)
# Eval!
logger
.
info
(
"***** Running evaluation {} *****"
.
format
(
prefix
))
logger
.
info
(
" Num examples = %d"
,
len
(
dataset
))
logger
.
info
(
" Batch size = %d"
,
args
.
eval_batch_size
)
eval_loss
,
eval_accuracy
=
0
,
0
nb_eval_steps
,
nb_eval_examples
=
0
,
0
for
batch
in
tqdm
(
eval_dataloader
,
desc
=
"Evaluating"
):
model
.
eval
()
batch
=
tuple
(
t
.
to
(
args
.
device
)
for
t
in
batch
)
with
torch
.
no_grad
():
inputs
=
{
'input_ids'
:
batch
[
0
],
'attention_mask'
:
batch
[
1
],
# 'token_type_ids': None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids
'token_type_ids'
:
batch
[
2
],
'labels'
:
batch
[
3
]}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[4],
# 'p_mask': batch[5]})
outputs
=
model
(
**
inputs
)
tmp_eval_loss
,
logits
=
outputs
[:
2
]
eval_loss
+=
tmp_eval_loss
.
mean
().
item
()
logits
=
logits
.
detach
().
cpu
().
numpy
()
label_ids
=
inputs
[
'labels'
].
to
(
'cpu'
).
numpy
()
tmp_eval_accuracy
=
accuracy
(
logits
,
label_ids
)
eval_accuracy
+=
tmp_eval_accuracy
nb_eval_steps
+=
1
nb_eval_examples
+=
inputs
[
'input_ids'
].
size
(
0
)
eval_loss
=
eval_loss
/
nb_eval_steps
eval_accuracy
=
eval_accuracy
/
nb_eval_examples
result
=
{
'eval_loss'
:
eval_loss
,
'eval_accuracy'
:
eval_accuracy
}
output_eval_file
=
os
.
path
.
join
(
args
.
output_dir
,
"eval_results.txt"
)
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
in
sorted
(
result
.
keys
()):
logger
.
info
(
"%s = %s"
,
key
,
str
(
result
[
key
]))
writer
.
write
(
"%s = %s
\n
"
%
(
key
,
str
(
result
[
key
])))
return
result
def
main
():
def
main
():
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
## Required parameters
## Required parameters
parser
.
add_argument
(
"--data_dir"
,
parser
.
add_argument
(
"--train_file"
,
default
=
None
,
type
=
str
,
required
=
True
,
default
=
None
,
help
=
"SWAG csv for training. E.g., train.csv"
)
type
=
str
,
parser
.
add_argument
(
"--predict_file"
,
default
=
None
,
type
=
str
,
required
=
True
,
required
=
True
,
help
=
"SWAG csv for predictions. E.g., val.csv or test.csv"
)
help
=
"The input data dir. Should contain the .csv files (or other data files) for the task."
)
parser
.
add_argument
(
"--model_type"
,
default
=
None
,
type
=
str
,
required
=
True
,
parser
.
add_argument
(
"--bert_model"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Model type selected in the list: "
+
", "
.
join
(
MODEL_CLASSES
.
keys
()))
help
=
"Bert pre-trained model selected in the list: bert-base-uncased, "
parser
.
add_argument
(
"--model_name_or_path"
,
default
=
None
,
type
=
str
,
required
=
True
,
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
help
=
"Path to pre-trained model or shortcut name selected in the list: "
+
", "
.
join
(
ALL_MODELS
))
"bert-base-multilingual-cased, bert-base-chinese."
)
parser
.
add_argument
(
"--output_dir"
,
default
=
None
,
type
=
str
,
required
=
True
,
parser
.
add_argument
(
"--output_dir"
,
help
=
"The output directory where the model checkpoints and predictions will be written."
)
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The output directory where the model checkpoints will be written."
)
## Other parameters
## Other parameters
parser
.
add_argument
(
"--
max_seq_length"
,
parser
.
add_argument
(
"--
config_name"
,
default
=
""
,
type
=
str
,
default
=
128
,
help
=
"Pretrained config name or path if not the same as model_name"
)
type
=
int
,
parser
.
add_argument
(
"--tokenizer_name"
,
default
=
""
,
type
=
str
,
help
=
"
The maximum total input sequence length after WordPiece tokenization.
\n
"
help
=
"
Pretrained tokenizer name or path if not the same as model_name"
)
"Sequences longer than this will be truncated, and sequences shorter
\n
"
parser
.
add_argument
(
"--max_seq_length"
,
default
=
384
,
type
=
int
,
"than this will be padded."
)
help
=
"The maximum total input sequence length after tokenization. Sequences "
parser
.
add_argument
(
"--do_train"
,
"longer than this will be truncated, and sequences shorter than this will be padded."
)
action
=
'store_true'
,
parser
.
add_argument
(
"--do_train"
,
action
=
'store_true'
,
help
=
"Whether to run training."
)
help
=
"Whether to run training."
)
parser
.
add_argument
(
"--do_eval"
,
parser
.
add_argument
(
"--do_eval"
,
action
=
'store_true'
,
action
=
'store_true'
,
help
=
"Whether to run eval on the dev set."
)
help
=
"Whether to run eval on the dev set."
)
parser
.
add_argument
(
"--do_lower_case"
,
parser
.
add_argument
(
"--evaluate_during_training"
,
action
=
'store_true'
,
action
=
'store_true'
,
help
=
"Rul evaluation during training at each logging step."
)
parser
.
add_argument
(
"--do_lower_case"
,
action
=
'store_true'
,
help
=
"Set this flag if you are using an uncased model."
)
help
=
"Set this flag if you are using an uncased model."
)
parser
.
add_argument
(
"--train_batch_size"
,
default
=
32
,
parser
.
add_argument
(
"--per_gpu_train_batch_size"
,
default
=
8
,
type
=
int
,
type
=
int
,
help
=
"Batch size per GPU/CPU for training."
)
help
=
"Total batch size for training."
)
parser
.
add_argument
(
"--per_gpu_eval_batch_size"
,
default
=
8
,
type
=
int
,
parser
.
add_argument
(
"--eval_batch_size"
,
help
=
"Batch size per GPU/CPU for evaluation."
)
default
=
8
,
parser
.
add_argument
(
"--learning_rate"
,
default
=
5e-5
,
type
=
float
,
type
=
int
,
help
=
"Total batch size for eval."
)
parser
.
add_argument
(
"--learning_rate"
,
default
=
5e-5
,
type
=
float
,
help
=
"The initial learning rate for Adam."
)
help
=
"The initial learning rate for Adam."
)
parser
.
add_argument
(
"--num_train_epochs"
,
parser
.
add_argument
(
'--gradient_accumulation_steps'
,
type
=
int
,
default
=
1
,
default
=
3.0
,
help
=
"Number of updates steps to accumulate before performing a backward/update pass."
)
type
=
float
,
parser
.
add_argument
(
"--weight_decay"
,
default
=
0.0
,
type
=
float
,
help
=
"Weight deay if we apply some."
)
parser
.
add_argument
(
"--adam_epsilon"
,
default
=
1e-8
,
type
=
float
,
help
=
"Epsilon for Adam optimizer."
)
parser
.
add_argument
(
"--max_grad_norm"
,
default
=
1.0
,
type
=
float
,
help
=
"Max gradient norm."
)
parser
.
add_argument
(
"--num_train_epochs"
,
default
=
3.0
,
type
=
float
,
help
=
"Total number of training epochs to perform."
)
help
=
"Total number of training epochs to perform."
)
parser
.
add_argument
(
"--warmup_proportion"
,
parser
.
add_argument
(
"--max_steps"
,
default
=-
1
,
type
=
int
,
default
=
0.1
,
help
=
"If > 0: set total number of training steps to perform. Override num_train_epochs."
)
type
=
float
,
parser
.
add_argument
(
"--warmup_steps"
,
default
=
0
,
type
=
int
,
help
=
"Proportion of training to perform linear learning rate warmup for. "
help
=
"Linear warmup over warmup_steps."
)
"E.g., 0.1 = 10%% of training."
)
parser
.
add_argument
(
"--no_cuda"
,
parser
.
add_argument
(
'--logging_steps'
,
type
=
int
,
default
=
50
,
action
=
'store_true'
,
help
=
"Log every X updates steps."
)
parser
.
add_argument
(
'--save_steps'
,
type
=
int
,
default
=
50
,
help
=
"Save checkpoint every X updates steps."
)
parser
.
add_argument
(
"--eval_all_checkpoints"
,
action
=
'store_true'
,
help
=
"Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
)
parser
.
add_argument
(
"--no_cuda"
,
action
=
'store_true'
,
help
=
"Whether not to use CUDA when available"
)
help
=
"Whether not to use CUDA when available"
)
parser
.
add_argument
(
"--local_rank"
,
parser
.
add_argument
(
'--overwrite_output_dir'
,
action
=
'store_true'
,
type
=
int
,
help
=
"Overwrite the content of the output directory"
)
default
=-
1
,
parser
.
add_argument
(
'--overwrite_cache'
,
action
=
'store_true'
,
help
=
"local_rank for distributed training on gpus"
)
help
=
"Overwrite the cached training and evaluation sets"
)
parser
.
add_argument
(
'--seed'
,
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
42
,
type
=
int
,
default
=
42
,
help
=
"random seed for initialization"
)
help
=
"random seed for initialization"
)
parser
.
add_argument
(
'--gradient_accumulation_steps'
,
type
=
int
,
default
=
1
,
help
=
"Number of updates steps to accumulate before performing a backward/update pass."
)
parser
.
add_argument
(
'--fp16'
,
action
=
'store_true'
,
help
=
"Whether to use 16-bit float precision instead of 32-bit"
)
parser
.
add_argument
(
'--loss_scale'
,
type
=
float
,
default
=
0
,
help
=
"Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.
\n
"
"0 (default value): dynamic loss scaling.
\n
"
"Positive power of 2: static loss scaling value.
\n
"
)
parser
.
add_argument
(
"--local_rank"
,
type
=
int
,
default
=-
1
,
help
=
"local_rank for distributed training on gpus"
)
parser
.
add_argument
(
'--fp16'
,
action
=
'store_true'
,
help
=
"Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
)
parser
.
add_argument
(
'--fp16_opt_level'
,
type
=
str
,
default
=
'O1'
,
help
=
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
)
parser
.
add_argument
(
'--server_ip'
,
type
=
str
,
default
=
''
,
help
=
"Can be used for distant debugging."
)
parser
.
add_argument
(
'--server_port'
,
type
=
str
,
default
=
''
,
help
=
"Can be used for distant debugging."
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
if
os
.
path
.
exists
(
args
.
output_dir
)
and
os
.
listdir
(
args
.
output_dir
)
and
args
.
do_train
and
not
args
.
overwrite_output_dir
:
raise
ValueError
(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
.
format
(
args
.
output_dir
))
# Setup distant debugging if needed
if
args
.
server_ip
and
args
.
server_port
:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import
ptvsd
print
(
"Waiting for debugger attach"
)
ptvsd
.
enable_attach
(
address
=
(
args
.
server_ip
,
args
.
server_port
),
redirect_output
=
True
)
ptvsd
.
wait_for_attach
()
# Setup CUDA, GPU & distributed training
if
args
.
local_rank
==
-
1
or
args
.
no_cuda
:
if
args
.
local_rank
==
-
1
or
args
.
no_cuda
:
device
=
torch
.
device
(
"cuda"
if
torch
.
cuda
.
is_available
()
and
not
args
.
no_cuda
else
"cpu"
)
device
=
torch
.
device
(
"cuda"
if
torch
.
cuda
.
is_available
()
and
not
args
.
no_cuda
else
"cpu"
)
n_gpu
=
torch
.
cuda
.
device_count
()
args
.
n_gpu
=
torch
.
cuda
.
device_count
()
else
:
else
:
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch
.
cuda
.
set_device
(
args
.
local_rank
)
torch
.
cuda
.
set_device
(
args
.
local_rank
)
device
=
torch
.
device
(
"cuda"
,
args
.
local_rank
)
device
=
torch
.
device
(
"cuda"
,
args
.
local_rank
)
n_gpu
=
1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch
.
distributed
.
init_process_group
(
backend
=
'nccl'
)
torch
.
distributed
.
init_process_group
(
backend
=
'nccl'
)
logger
.
info
(
"device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}"
.
format
(
args
.
n_gpu
=
1
device
,
n_gpu
,
bool
(
args
.
local_rank
!=
-
1
),
args
.
fp16
))
args
.
device
=
device
if
args
.
gradient_accumulation_steps
<
1
:
# Setup logging
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
args
.
gradient_accumulation_steps
))
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
level
=
logging
.
INFO
if
args
.
local_rank
in
[
-
1
,
0
]
else
logging
.
WARN
)
logger
.
warning
(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s"
,
args
.
local_rank
,
device
,
args
.
n_gpu
,
bool
(
args
.
local_rank
!=
-
1
),
args
.
fp16
)
args
.
train_batch_size
=
args
.
train_batch_size
//
args
.
gradient_accumulation_steps
# Set seed
set_seed
(
args
)
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
if
n_gpu
>
0
:
torch
.
cuda
.
manual_seed_all
(
args
.
seed
)
if
not
args
.
do_train
and
not
args
.
do_eval
:
# Load pretrained model and tokenizer
raise
ValueError
(
"At least one of `do_train` or `do_eval` must be True."
)
if
args
.
local_rank
not
in
[
-
1
,
0
]:
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training will download model & vocab
if
os
.
path
.
exists
(
args
.
output_dir
)
and
os
.
listdir
(
args
.
output_dir
):
args
.
model_type
=
args
.
model_type
.
lower
()
raise
ValueError
(
"Output directory ({}) already exists and is not empty."
.
format
(
args
.
output_dir
))
config_class
,
model_class
,
tokenizer_class
=
MODEL_CLASSES
[
args
.
model_type
]
if
not
os
.
path
.
exists
(
args
.
output_dir
):
config
=
config_class
.
from_pretrained
(
args
.
config_name
if
args
.
config_name
else
args
.
model_name_or_path
)
os
.
makedirs
(
args
.
output_dir
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
tokenizer_name
if
args
.
tokenizer_name
else
args
.
model_name_or_path
,
do_lower_case
=
args
.
do_lower_case
)
model
=
model_class
.
from_pretrained
(
args
.
model_name_or_path
,
from_tf
=
bool
(
'.ckpt'
in
args
.
model_name_or_path
),
config
=
config
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
if
args
.
local_rank
==
0
:
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training will download model & vocab
# Prepare model
model
.
to
(
args
.
device
)
model
=
BertForMultipleChoice
.
from_pretrained
(
args
.
bert_model
,
cache_dir
=
os
.
path
.
join
(
str
(
PYTORCH_PRETRAINED_BERT_CACHE
),
'distributed_{}'
.
format
(
args
.
local_rank
)),
num_choices
=
4
)
if
args
.
fp16
:
model
.
half
()
model
.
to
(
device
)
if
args
.
local_rank
!=
-
1
:
try
:
from
apex.parallel
import
DistributedDataParallel
as
DDP
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
model
=
DDP
(
model
)
logger
.
info
(
"Training/evaluation parameters %s"
,
args
)
elif
n_gpu
>
1
:
model
=
torch
.
nn
.
DataParallel
(
model
)
# Training
if
args
.
do_train
:
if
args
.
do_train
:
train_dataset
=
load_and_cache_examples
(
args
,
tokenizer
,
evaluate
=
False
,
output_examples
=
False
)
global_step
,
tr_loss
=
train
(
args
,
train_dataset
,
model
,
tokenizer
)
logger
.
info
(
" global_step = %s, average loss = %s"
,
global_step
,
tr_loss
)
# Prepare data loader
train_examples
=
read_swag_examples
(
os
.
path
.
join
(
args
.
data_dir
,
'train.csv'
),
is_training
=
True
)
train_features
=
convert_examples_to_features
(
train_examples
,
tokenizer
,
args
.
max_seq_length
,
True
)
all_input_ids
=
torch
.
tensor
(
select_field
(
train_features
,
'input_ids'
),
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
(
select_field
(
train_features
,
'input_mask'
),
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
(
select_field
(
train_features
,
'segment_ids'
),
dtype
=
torch
.
long
)
all_label
=
torch
.
tensor
([
f
.
label
for
f
in
train_features
],
dtype
=
torch
.
long
)
train_data
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_label
)
if
args
.
local_rank
==
-
1
:
train_sampler
=
RandomSampler
(
train_data
)
else
:
train_sampler
=
DistributedSampler
(
train_data
)
train_dataloader
=
DataLoader
(
train_data
,
sampler
=
train_sampler
,
batch_size
=
args
.
train_batch_size
)
num_train_optimization_steps
=
len
(
train_dataloader
)
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
if
args
.
local_rank
!=
-
1
:
num_train_optimization_steps
=
num_train_optimization_steps
//
torch
.
distributed
.
get_world_size
()
# Prepare optimizer
param_optimizer
=
list
(
model
.
named_parameters
())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer
=
[
n
for
n
in
param_optimizer
]
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FusedAdam
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
)
optimizer
=
FusedAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
bias_correction
=
False
,
max_grad_norm
=
1.0
)
if
args
.
loss_scale
==
0
:
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
global_step
=
0
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
" Num examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Num steps = %d"
,
num_train_optimization_steps
)
model
.
train
()
for
_
in
trange
(
int
(
args
.
num_train_epochs
),
desc
=
"Epoch"
):
tr_loss
=
0
nb_tr_examples
,
nb_tr_steps
=
0
,
0
for
step
,
batch
in
enumerate
(
tqdm
(
train_dataloader
,
desc
=
"Iteration"
)):
batch
=
tuple
(
t
.
to
(
device
)
for
t
in
batch
)
input_ids
,
input_mask
,
segment_ids
,
label_ids
=
batch
loss
=
model
(
input_ids
,
segment_ids
,
input_mask
,
label_ids
)
if
n_gpu
>
1
:
loss
=
loss
.
mean
()
# mean() to average on multi-gpu.
if
args
.
fp16
and
args
.
loss_scale
!=
1.0
:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss
=
loss
*
args
.
loss_scale
if
args
.
gradient_accumulation_steps
>
1
:
loss
=
loss
/
args
.
gradient_accumulation_steps
tr_loss
+=
loss
.
item
()
nb_tr_examples
+=
input_ids
.
size
(
0
)
nb_tr_steps
+=
1
if
args
.
fp16
:
optimizer
.
backward
(
loss
)
else
:
loss
.
backward
()
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
if
args
.
fp16
:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step
=
args
.
learning_rate
*
warmup_linear
.
get_lr
(
global_step
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
zero_grad
()
global_step
+=
1
# Save the trained model and the tokenizer
if
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
:
# Create output directory if needed
if
not
os
.
path
.
exists
(
args
.
output_dir
)
and
args
.
local_rank
in
[
-
1
,
0
]:
os
.
makedirs
(
args
.
output_dir
)
if
args
.
do_train
:
logger
.
info
(
"Saving model checkpoint to %s"
,
args
.
output_dir
)
# Save a trained model, configuration and tokenizer
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Only save the model it-self
# They can then be reloaded using `from_pretrained()`
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Take care of distributed/parallel training
# If we save using the predefined names, we can load using `from_pretrained`
model_to_save
.
save_pretrained
(
args
.
output_dir
)
output_model_file
=
os
.
path
.
join
(
args
.
output_dir
,
WEIGHTS_NAME
)
tokenizer
.
save_pretrained
(
args
.
output_dir
)
output_config_file
=
os
.
path
.
join
(
args
.
output_dir
,
CONFIG_NAME
)
torch
.
save
(
model_to_save
.
state_dict
(),
output_model_file
)
# Good practice: save your training arguments together with the trained model
model_to_save
.
config
.
to_json_file
(
output_config_file
)
torch
.
save
(
args
,
os
.
path
.
join
(
args
.
output_dir
,
'training_args.bin'
))
tokenizer
.
save_vocabulary
(
args
.
output_dir
)
# Load a trained model and vocabulary that you have fine-tuned
# Load a trained model and vocabulary that you have fine-tuned
model
=
BertForMultipleChoice
.
from_pretrained
(
args
.
output_dir
,
num_choices
=
4
)
model
=
model_class
.
from_pretrained
(
args
.
output_dir
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
output_dir
,
do_lower_case
=
args
.
do_lower_case
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
output_dir
)
else
:
model
.
to
(
args
.
device
)
model
=
BertForMultipleChoice
.
from_pretrained
(
args
.
bert_model
,
num_choices
=
4
)
model
.
to
(
device
)
if
args
.
do_eval
and
(
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
):
eval_examples
=
read_swag_examples
(
os
.
path
.
join
(
args
.
data_dir
,
'val.csv'
),
is_training
=
True
)
eval_features
=
convert_examples_to_features
(
eval_examples
,
tokenizer
,
args
.
max_seq_length
,
True
)
logger
.
info
(
"***** Running evaluation *****"
)
logger
.
info
(
" Num examples = %d"
,
len
(
eval_examples
))
logger
.
info
(
" Batch size = %d"
,
args
.
eval_batch_size
)
all_input_ids
=
torch
.
tensor
(
select_field
(
eval_features
,
'input_ids'
),
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
(
select_field
(
eval_features
,
'input_mask'
),
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
(
select_field
(
eval_features
,
'segment_ids'
),
dtype
=
torch
.
long
)
all_label
=
torch
.
tensor
([
f
.
label
for
f
in
eval_features
],
dtype
=
torch
.
long
)
eval_data
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_label
)
# Run prediction for full data
eval_sampler
=
SequentialSampler
(
eval_data
)
eval_dataloader
=
DataLoader
(
eval_data
,
sampler
=
eval_sampler
,
batch_size
=
args
.
eval_batch_size
)
model
.
eval
()
eval_loss
,
eval_accuracy
=
0
,
0
nb_eval_steps
,
nb_eval_examples
=
0
,
0
for
input_ids
,
input_mask
,
segment_ids
,
label_ids
in
tqdm
(
eval_dataloader
,
desc
=
"Evaluating"
):
input_ids
=
input_ids
.
to
(
device
)
input_mask
=
input_mask
.
to
(
device
)
segment_ids
=
segment_ids
.
to
(
device
)
label_ids
=
label_ids
.
to
(
device
)
with
torch
.
no_grad
():
tmp_eval_loss
=
model
(
input_ids
,
segment_ids
,
input_mask
,
label_ids
)
logits
=
model
(
input_ids
,
segment_ids
,
input_mask
)
logits
=
logits
.
detach
().
cpu
().
numpy
()
label_ids
=
label_ids
.
to
(
'cpu'
).
numpy
()
tmp_eval_accuracy
=
accuracy
(
logits
,
label_ids
)
eval_loss
+=
tmp_eval_loss
.
mean
().
item
()
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
eval_accuracy
+=
tmp_eval_accuracy
results
=
{}
if
args
.
do_eval
and
args
.
local_rank
in
[
-
1
,
0
]:
if
args
.
do_train
:
checkpoints
=
[
args
.
output_dir
]
else
:
# if do_train is False and do_eval is true, load model directly from pretrained.
checkpoints
=
[
args
.
model_name_or_path
]
if
args
.
eval_all_checkpoints
:
checkpoints
=
list
(
os
.
path
.
dirname
(
c
)
for
c
in
sorted
(
glob
.
glob
(
args
.
output_dir
+
'/**/'
+
WEIGHTS_NAME
,
recursive
=
True
)))
logging
.
getLogger
(
"pytorch_transformers.modeling_utils"
).
setLevel
(
logging
.
WARN
)
# Reduce model loading logs
logger
.
info
(
"Evaluate the following checkpoints: %s"
,
checkpoints
)
for
checkpoint
in
checkpoints
:
# Reload the model
global_step
=
checkpoint
.
split
(
'-'
)[
-
1
]
if
len
(
checkpoints
)
>
1
else
""
model
=
model_class
.
from_pretrained
(
checkpoint
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
checkpoint
)
model
.
to
(
args
.
device
)
nb_eval_examples
+=
input_ids
.
size
(
0
)
# Evaluate
nb_ev
al_step
s
+=
1
result
=
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
glob
al_step
)
eval_loss
=
eval_loss
/
nb_eval_steps
result
=
dict
((
k
+
(
'_{}'
.
format
(
global_step
)
if
global_step
else
''
),
v
)
for
k
,
v
in
result
.
items
())
eval_accuracy
=
eval_accuracy
/
nb_eval_examples
results
.
update
(
result
)
result
=
{
'eval_loss'
:
eval_loss
,
logger
.
info
(
"Results: {}"
.
format
(
results
))
'eval_accuracy'
:
eval_accuracy
,
'global_step'
:
global_step
,
'loss'
:
tr_loss
/
global_step
}
output_eval_file
=
os
.
path
.
join
(
args
.
output_dir
,
"eval_results.txt"
)
return
results
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
in
sorted
(
result
.
keys
()):
logger
.
info
(
" %s = %s"
,
key
,
str
(
result
[
key
]))
writer
.
write
(
"%s = %s
\n
"
%
(
key
,
str
(
result
[
key
])))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
main
()
main
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment