Unverified Commit b1cd4874 authored by Raushan Turganbay's avatar Raushan Turganbay Committed by GitHub
Browse files

Do not remove half seq length in generation tests (#30016)



* remove seq length from generation tests

* style and quality

* [test_all] & PR suggestion
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/generation/test_utils.py
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>

* [test all] remove unused variables

---------
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
parent b4fd49b6
......@@ -82,43 +82,35 @@ class GenerationTesterMixin:
model_tester = None
all_generative_model_classes = ()
input_name = "input_ids"
max_new_tokens = 3
def _get_input_ids_and_config(self, batch_size=2):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict[self.input_name]
# cut to half length & take max batch_size 3
sequence_length = input_ids.shape[-1] // 2
input_ids = input_ids[:batch_size, :sequence_length]
input_ids = input_ids[:batch_size]
# generate max 3 tokens
if config.is_encoder_decoder:
max_length = 4
else:
max_length = input_ids.shape[-1] + 3
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
if isinstance(config.eos_token_id, int):
config.eos_token_id = [config.eos_token_id]
config.pad_token_id = config.eos_token_id[0]
attention_mask = torch.ones_like(input_ids, dtype=torch.long)[:batch_size, :sequence_length]
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
# It is important set set the eos_token_id to None to ensure that no sequences
# shorter than `max_length` can be generated
config.eos_token_id = None
config.forced_eos_token_id = None
return config, input_ids, attention_mask, max_length
return config, input_ids, attention_mask
@staticmethod
def _get_logits_processor_and_warper_kwargs(
input_length,
forced_bos_token_id=None,
forced_eos_token_id=None,
max_length=None,
):
process_kwargs = {
"min_length": input_length + 1 if max_length is None else max_length - 1,
"bad_words_ids": [[1, 0]],
"repetition_penalty": 1.2,
"remove_invalid_values": True,
......@@ -185,7 +177,6 @@ class GenerationTesterMixin:
model,
input_ids,
attention_mask,
max_length,
output_scores=False,
output_logits=False,
output_attentions=False,
......@@ -196,7 +187,6 @@ class GenerationTesterMixin:
input_ids.shape[-1],
forced_bos_token_id=model.config.forced_bos_token_id,
forced_eos_token_id=model.config.forced_eos_token_id,
max_length=max_length,
)
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
......@@ -204,7 +194,7 @@ class GenerationTesterMixin:
input_ids,
do_sample=False,
num_beams=1,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_scores=output_scores,
......@@ -221,7 +211,6 @@ class GenerationTesterMixin:
model,
input_ids,
attention_mask,
max_length,
num_return_sequences,
logits_warper_kwargs,
process_kwargs,
......@@ -237,7 +226,7 @@ class GenerationTesterMixin:
input_ids,
do_sample=True,
num_beams=1,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
num_return_sequences=num_return_sequences,
output_scores=output_scores,
output_logits=output_logits,
......@@ -256,7 +245,6 @@ class GenerationTesterMixin:
model,
input_ids,
attention_mask,
max_length,
beam_kwargs,
logits_process_kwargs,
output_scores=False,
......@@ -269,7 +257,7 @@ class GenerationTesterMixin:
output_generate = model.generate(
input_ids,
do_sample=False,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
output_scores=output_scores,
output_logits=output_logits,
output_attentions=output_attentions,
......@@ -287,7 +275,6 @@ class GenerationTesterMixin:
model,
input_ids,
attention_mask,
max_length,
beam_kwargs,
logits_warper_kwargs,
output_scores=False,
......@@ -301,7 +288,7 @@ class GenerationTesterMixin:
output_generate = model.generate(
input_ids,
do_sample=True,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
output_scores=output_scores,
output_logits=output_logits,
output_attentions=output_attentions,
......@@ -319,7 +306,6 @@ class GenerationTesterMixin:
model,
input_ids,
attention_mask,
max_length,
beam_kwargs,
logits_process_kwargs,
output_scores=False,
......@@ -332,7 +318,7 @@ class GenerationTesterMixin:
output_generate = model.generate(
input_ids,
do_sample=False,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
output_scores=output_scores,
output_logits=output_logits,
output_attentions=output_attentions,
......@@ -350,7 +336,6 @@ class GenerationTesterMixin:
model,
input_ids,
attention_mask,
max_length,
constraints,
beam_kwargs,
logits_process_kwargs,
......@@ -364,7 +349,7 @@ class GenerationTesterMixin:
output_generate = model.generate(
input_ids,
do_sample=False,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
output_scores=output_scores,
output_logits=output_logits,
output_attentions=output_attentions,
......@@ -383,7 +368,6 @@ class GenerationTesterMixin:
model,
input_ids,
attention_mask,
max_length,
output_scores=False,
output_logits=False,
output_attentions=False,
......@@ -399,7 +383,6 @@ class GenerationTesterMixin:
input_ids.shape[-1],
forced_bos_token_id=model.config.forced_bos_token_id,
forced_eos_token_id=model.config.forced_eos_token_id,
max_length=max_length,
)
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
......@@ -407,7 +390,7 @@ class GenerationTesterMixin:
input_ids,
do_sample=False,
num_beams=1,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_scores=output_scores,
......@@ -422,18 +405,19 @@ class GenerationTesterMixin:
def test_greedy_generate(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
output_generate = self._greedy_generate(
model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
)
output_generate = self._greedy_generate(model=model, input_ids=input_ids, attention_mask=attention_mask)
self.assertTrue(output_generate.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
def test_greedy_generate_dict_outputs(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
......@@ -441,7 +425,6 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
output_scores=True,
output_logits=True,
output_hidden_states=True,
......@@ -450,20 +433,21 @@ class GenerationTesterMixin:
)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
else:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
self.assertTrue(output_generate.sequences.shape[-1] == max_length)
self._check_outputs(output_generate, input_ids, model.config)
def test_greedy_generate_dict_outputs_use_cache(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
if not hasattr(config, "use_cache"):
self.skipTest("This model doesn't support caching")
......@@ -475,7 +459,6 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
output_scores=True,
output_logits=True,
output_hidden_states=True,
......@@ -483,57 +466,54 @@ class GenerationTesterMixin:
return_dict_in_generate=True,
)
self.assertTrue(output_generate.sequences.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
def test_sample_generate(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
if model.config.is_encoder_decoder:
max_length = 4
process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
forced_bos_token_id=model.config.forced_bos_token_id,
forced_eos_token_id=model.config.forced_eos_token_id,
max_length=max_length,
)
output_generate = self._sample_generate(
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
num_return_sequences=1,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
)
self.assertTrue(output_generate.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
def test_sample_generate_dict_output(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
if model.config.is_encoder_decoder:
max_length = 4
process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
forced_bos_token_id=model.config.forced_bos_token_id,
forced_eos_token_id=model.config.forced_eos_token_id,
max_length=max_length,
)
output_generate = self._sample_generate(
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
num_return_sequences=2,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
......@@ -545,30 +525,28 @@ class GenerationTesterMixin:
)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
else:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)
self.assertTrue(output_generate.sequences.shape[-1] == max_length)
self._check_outputs(output_generate, input_ids, model.config, num_return_sequences=2)
def test_beam_search_generate(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
if model.config.is_encoder_decoder:
max_length = 4
logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
config.forced_bos_token_id,
config.forced_eos_token_id,
max_length,
)
beam_kwargs = self._get_beam_kwargs()
......@@ -576,36 +554,33 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
beam_kwargs=beam_kwargs,
logits_process_kwargs=logits_process_kwargs,
)
self.assertTrue(output_generate.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
def test_beam_search_generate_dict_output(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
# disable cache
config.use_cache = False
model = model_class(config).to(torch_device).eval()
if model.config.is_encoder_decoder:
max_length = 4
logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
config.forced_bos_token_id,
config.forced_eos_token_id,
max_length,
)
beam_kwargs = self._get_beam_kwargs()
output_generate = self._beam_search_generate(
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
beam_kwargs=beam_kwargs,
logits_process_kwargs=logits_process_kwargs,
output_scores=True,
......@@ -615,15 +590,16 @@ class GenerationTesterMixin:
return_dict_in_generate=True,
)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
else:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)
self.assertTrue(output_generate.sequences.shape[-1] == max_length)
self._check_outputs(
output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
)
......@@ -631,20 +607,16 @@ class GenerationTesterMixin:
def test_beam_search_generate_dict_outputs_use_cache(self):
for model_class in self.all_generative_model_classes:
# enable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
if not hasattr(config, "use_cache"):
self.skipTest("This model doesn't support caching")
model = model_class(config).to(torch_device).eval()
if model.config.is_encoder_decoder:
max_length = 4
logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
config.forced_bos_token_id,
config.forced_eos_token_id,
max_length,
)
beam_kwargs = self._get_beam_kwargs()
......@@ -656,7 +628,6 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
beam_kwargs=beam_kwargs,
logits_process_kwargs=logits_process_kwargs,
output_scores=True,
......@@ -666,7 +637,10 @@ class GenerationTesterMixin:
return_dict_in_generate=True,
)
self.assertTrue(output_generate.sequences.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
self._check_outputs(
output_generate, input_ids, model.config, use_cache=True, num_return_sequences=beam_kwargs["num_beams"]
)
......@@ -681,7 +655,7 @@ class GenerationTesterMixin:
if model_class._no_split_modules is None:
continue
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
model = model_class(config).eval()
with tempfile.TemporaryDirectory() as tmp_dir:
......@@ -691,32 +665,32 @@ class GenerationTesterMixin:
new_model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
num_beams=2,
)
def test_beam_sample_generate(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
_, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
model = model_class(config).to(torch_device).eval()
if model.config.is_encoder_decoder:
max_length = 4
beam_kwargs = self._get_beam_kwargs()
output_generate = self._beam_sample_generate(
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
beam_kwargs=beam_kwargs,
logits_warper_kwargs=logits_warper_kwargs,
)
self.assertTrue(output_generate.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
if "inputs_embeds" in set(inspect.signature(model.prepare_inputs_for_generation).parameters):
input_embeds = model.get_input_embeddings()(input_ids)
beam_kwargs.update({"inputs_embeds": input_embeds})
......@@ -724,7 +698,6 @@ class GenerationTesterMixin:
model=model,
input_ids=None,
attention_mask=attention_mask,
max_length=max_length,
beam_kwargs=beam_kwargs,
logits_warper_kwargs=logits_warper_kwargs,
)
......@@ -733,23 +706,19 @@ class GenerationTesterMixin:
def test_beam_sample_generate_dict_output(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
# disable cache
config.use_cache = False
model = model_class(config).to(torch_device).eval()
_, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
if model.config.is_encoder_decoder:
max_length = 4
beam_kwargs = self._get_beam_kwargs()
output_generate = self._beam_sample_generate(
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
beam_kwargs=beam_kwargs,
logits_warper_kwargs=logits_warper_kwargs,
output_scores=True,
......@@ -760,21 +729,22 @@ class GenerationTesterMixin:
)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
else:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
self.assertTrue(output_generate.sequences.shape[-1] == max_length)
self._check_outputs(
output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
)
def test_generate_without_input_ids(self):
config, _, _, max_length = self._get_input_ids_and_config()
config, _, _ = self._get_input_ids_and_config()
# if no bos token id => cannot generate from None
if config.bos_token_id is None:
......@@ -788,22 +758,20 @@ class GenerationTesterMixin:
model = model_class(config).to(torch_device)
model.eval()
output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True)
output_ids_generate = model.generate(
do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True
)
self.assertIsNotNone(output_ids_generate)
def test_group_beam_search_generate(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
if model.config.is_encoder_decoder:
max_length = 4
logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
config.forced_bos_token_id,
config.forced_eos_token_id,
max_length,
)
# check `generate()` and `group_beam_search()` are equal
......@@ -812,11 +780,13 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
beam_kwargs=beam_kwargs,
logits_process_kwargs=logits_process_kwargs,
)
self.assertTrue(output_generate.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
# check `group_beam_search` for higher than 1 `num_return_sequences`
num_return_sequences = 2
......@@ -825,26 +795,24 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
beam_kwargs=beam_kwargs,
logits_process_kwargs=logits_process_kwargs,
)
self.assertTrue(output_generate.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
def test_group_beam_search_generate_dict_output(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
if model.config.is_encoder_decoder:
max_length = 4
logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
config.forced_bos_token_id,
config.forced_eos_token_id,
max_length,
)
beam_kwargs = self._get_diverse_beam_kwargs()
......@@ -852,7 +820,6 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
beam_kwargs=beam_kwargs,
logits_process_kwargs=logits_process_kwargs,
output_scores=True,
......@@ -862,15 +829,16 @@ class GenerationTesterMixin:
return_dict_in_generate=True,
)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
else:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)
self.assertTrue(output_generate.sequences.shape[-1] == max_length)
self._check_outputs(
output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
)
......@@ -879,16 +847,14 @@ class GenerationTesterMixin:
@is_flaky()
def test_constrained_beam_search_generate(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
max_length = 20
logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
config.forced_bos_token_id,
config.forced_eos_token_id,
max_length,
)
# Sample constraints
......@@ -905,12 +871,16 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
constraints=constraints,
beam_kwargs=beam_kwargs,
logits_process_kwargs=logits_process_kwargs,
)
self.assertTrue(output_generate.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
for generation_output in output_generate:
self._check_sequence_inside_sequence(force_tokens, generation_output)
......@@ -921,39 +891,37 @@ class GenerationTesterMixin:
PhrasalConstraint(force_tokens),
]
max_length = 20
beam_kwargs = self._get_constrained_beam_kwargs(num_return_sequences=2)
output_generate = self._constrained_beam_search_generate(
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
constraints=constraints,
beam_kwargs=beam_kwargs,
logits_process_kwargs=logits_process_kwargs,
)
self.assertTrue(output_generate.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
for generation_output in output_generate:
self._check_sequence_inside_sequence(force_tokens, generation_output)
def test_constrained_beam_search_generate_dict_output(self):
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
# disable cache
config.use_cache = False
model = model_class(config).to(torch_device).eval()
if model.config.is_encoder_decoder:
max_length = 20
logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
config.forced_bos_token_id,
config.forced_eos_token_id,
max_length,
)
# Sample constraints
......@@ -969,7 +937,6 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
constraints=constraints,
beam_kwargs=beam_kwargs,
logits_process_kwargs=logits_process_kwargs,
......@@ -981,15 +948,16 @@ class GenerationTesterMixin:
)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
else:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
# Retrocompatibility check
self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)
self.assertTrue(output_generate.sequences.shape[-1] == max_length)
self._check_outputs(
output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
)
......@@ -1000,7 +968,7 @@ class GenerationTesterMixin:
if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
self.skipTest("Won't fix: old model with different cache format")
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
# NOTE: contrastive search only works with cache on at the moment.
if not hasattr(config, "use_cache"):
......@@ -1011,9 +979,12 @@ class GenerationTesterMixin:
# test old generation output for backwards compatibility
model = model_class(config).to(torch_device).eval()
output_generate = self._contrastive_generate(
model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
model=model, input_ids=input_ids, attention_mask=attention_mask
)
self.assertTrue(output_generate.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
def test_contrastive_generate_dict_outputs_use_cache(self):
for model_class in self.all_generative_model_classes:
......@@ -1021,7 +992,7 @@ class GenerationTesterMixin:
if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
self.skipTest("Won't fix: old model with different cache format")
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
# NOTE: contrastive search only works with cache on at the moment.
if not hasattr(config, "use_cache"):
......@@ -1034,7 +1005,6 @@ class GenerationTesterMixin:
model=model,
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
output_scores=True,
output_logits=True,
output_hidden_states=True,
......@@ -1042,7 +1012,10 @@ class GenerationTesterMixin:
return_dict_in_generate=True,
)
self.assertTrue(output_generate.sequences.shape[-1] == max_length)
if model.config.is_encoder_decoder:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
else:
self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
def test_contrastive_generate_low_memory(self):
......@@ -1053,7 +1026,7 @@ class GenerationTesterMixin:
if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode", "jamba"]):
self.skipTest("TODO: fix me")
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config(batch_size=1)
config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
# NOTE: contrastive search only works with cache on at the moment.
if not hasattr(config, "use_cache"):
......@@ -1070,7 +1043,7 @@ class GenerationTesterMixin:
top_k=4,
penalty_alpha=0.6,
low_memory=True,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
attention_mask=attention_mask,
)
......@@ -1079,7 +1052,7 @@ class GenerationTesterMixin:
top_k=4,
penalty_alpha=0.6,
low_memory=False,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
attention_mask=attention_mask,
)
self.assertListEqual(low_output.tolist(), high_output.tolist())
......@@ -1102,7 +1075,7 @@ class GenerationTesterMixin:
]
):
self.skipTest("May fix in the future: need model-specific fixes")
config, input_ids, _, _ = self._get_input_ids_and_config(batch_size=2)
config, input_ids, _ = self._get_input_ids_and_config(batch_size=2)
# batch_size=1 is ok, but batch_size>1 will cause non-identical output
config.use_cache = True
......@@ -1150,7 +1123,7 @@ class GenerationTesterMixin:
self.skipTest("May fix in the future: need model-specific fixes")
# enable cache
config, input_ids, attention_mask, _ = self._get_input_ids_and_config(batch_size=1)
config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
# NOTE: assisted generation only works with cache on at the moment.
if not hasattr(config, "use_cache"):
......@@ -1213,7 +1186,7 @@ class GenerationTesterMixin:
self.skipTest("May fix in the future: need model-specific fixes")
# enable cache
config, input_ids, attention_mask, _ = self._get_input_ids_and_config(batch_size=1)
config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
# NOTE: assisted generation only works with cache on at the moment.
if not hasattr(config, "use_cache"):
......@@ -1273,7 +1246,7 @@ class GenerationTesterMixin:
self.skipTest("May fix in the future: need model-specific fixes")
# enable cache
config, input_ids, attention_mask, _ = self._get_input_ids_and_config(batch_size=1)
config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
# NOTE: assisted generation only works with cache on at the moment.
if not hasattr(config, "use_cache"):
......@@ -1311,7 +1284,7 @@ class GenerationTesterMixin:
"""Test designed for encoder-decoder models to ensure the attention head masking is used."""
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
for model_class in self.all_generative_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
# We want to test only encoder-decoder models
if not config.is_encoder_decoder:
continue
......@@ -1358,7 +1331,7 @@ class GenerationTesterMixin:
# - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
decoder_only_classes = []
for model_class in self.all_generative_model_classes:
config, _, _, _ = self._get_input_ids_and_config()
config, _, _ = self._get_input_ids_and_config()
if config.is_encoder_decoder:
continue
else:
......@@ -1391,7 +1364,7 @@ class GenerationTesterMixin:
return model_kwargs
for model_class in decoder_only_classes:
config, input_ids, attention_mask, _ = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
signature = inspect.signature(model.forward).parameters.keys()
......@@ -1485,7 +1458,7 @@ class GenerationTesterMixin:
# When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids`
# if fails, you should probably update the `prepare_inputs_for_generation` function
for model_class in self.all_generative_model_classes:
config, input_ids, _, _ = self._get_input_ids_and_config()
config, input_ids, _ = self._get_input_ids_and_config()
# Ignore:
# a) eos (to always output 20 tokens) and pad (so we don't try to infer the attn mask from the input_ids,
......@@ -1616,7 +1589,7 @@ class GenerationTesterMixin:
if not model_class._supports_cache_class:
self.skipTest("This model does not support the new cache format")
config, input_ids, attention_mask, _ = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = True
config.is_decoder = True
......
......@@ -299,12 +299,10 @@ class BigBirdPegasusModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineT
input_ids = input_ids[:batch_size, :sequence_length]
attention_mask = attention_mask[:batch_size, :sequence_length]
# generate max 3 tokens
max_length = input_ids.shape[-1] + 3
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
config.pad_token_id = config.eos_token_id
return config, input_ids, attention_mask, max_length
return config, input_ids, attention_mask
def setUp(self):
self.model_tester = BigBirdPegasusModelTester(self)
......
......@@ -457,6 +457,20 @@ class LEDModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
],
)
def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
# overwrite because LED does not have (bs, num_heads, seq_len, seq_len) shape
encoder_expected_shape = (
batch_size,
config.num_attention_heads,
seq_length,
self.model_tester.attention_window // 2 * 2 + 1,
)
self.assertIsInstance(attentions, tuple)
self.assertListEqual(
[layer_attentions.shape for layer_attentions in attentions],
[encoder_expected_shape] * len(attentions),
)
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
......
......@@ -752,7 +752,7 @@ class LongT5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMix
def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
block_len = getattr(self.model_tester, "block_len", None)
encoder_expected_shape = (batch_size, 1, config.num_attention_heads, block_len, 3 * block_len)
encoder_expected_shape = (batch_size, 2, config.num_attention_heads, block_len, 3 * block_len)
self.assertIsInstance(attentions, tuple)
self.assertListEqual(
[layer_attentions.shape for layer_attentions in attentions],
......@@ -885,7 +885,7 @@ class LongT5TGlobalModelTest(LongT5ModelTest):
global_seq_length = seq_length // global_block_size
encoder_expected_shape = (
batch_size,
1,
2,
config.num_attention_heads,
block_len,
3 * block_len + global_seq_length,
......
......@@ -245,34 +245,28 @@ class MusicgenDecoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTeste
sequence_length = input_ids.shape[-1]
input_ids = input_ids[: batch_size * config.num_codebooks, :]
# generate max 3 tokens
max_length = input_ids.shape[-1] + 3
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long)
return config, input_ids, attention_mask, max_length
return config, input_ids, attention_mask
@staticmethod
def _get_logits_processor_and_warper_kwargs(
input_length,
forced_bos_token_id=None,
forced_eos_token_id=None,
max_length=None,
):
process_kwargs = {
"min_length": input_length + 1 if max_length is None else max_length - 1,
}
process_kwargs = {}
warper_kwargs = {}
return process_kwargs, warper_kwargs
def test_greedy_generate_stereo_outputs(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.audio_channels = 2
model = model_class(config).to(torch_device).eval()
output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......@@ -1327,9 +1321,7 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
input_ids = input_ids[:batch_size, :]
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long)
# generate max 3 tokens
max_length = 3
return config, input_ids, attention_mask, max_length
return config, input_ids, attention_mask
# override since the `input_ids` cannot be used as the `decoder_input_ids` for musicgen (input / outputs are
# different modalities -> different shapes)
......@@ -1338,29 +1330,22 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
model,
input_ids,
attention_mask,
max_length,
output_scores=False,
output_attentions=False,
output_hidden_states=False,
return_dict_in_generate=False,
):
logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
max_length=max_length,
)
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
output_generate = model.generate(
input_ids,
do_sample=False,
num_beams=1,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
remove_invalid_values=True,
**logits_process_kwargs,
**model_kwargs,
)
......@@ -1373,10 +1358,7 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
model,
input_ids,
attention_mask,
max_length,
num_return_sequences,
logits_warper_kwargs,
process_kwargs,
output_scores=False,
output_attentions=False,
output_hidden_states=False,
......@@ -1388,15 +1370,13 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
input_ids,
do_sample=True,
num_beams=1,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
num_return_sequences=num_return_sequences,
output_scores=output_scores,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict_in_generate=return_dict_in_generate,
remove_invalid_values=True,
**logits_warper_kwargs,
**process_kwargs,
**model_kwargs,
)
......@@ -1407,25 +1387,21 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
input_length,
forced_bos_token_id=None,
forced_eos_token_id=None,
max_length=None,
):
process_kwargs = {
"min_length": input_length + 1 if max_length is None else max_length - 1,
}
process_kwargs = {}
warper_kwargs = {}
return process_kwargs, warper_kwargs
def test_greedy_generate_dict_outputs(self):
for model_class in self.greedy_sample_model_classes:
# disable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......@@ -1439,7 +1415,7 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
def test_greedy_generate_dict_outputs_use_cache(self):
for model_class in self.greedy_sample_model_classes:
# enable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = True
config.is_decoder = True
......@@ -1448,7 +1424,6 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......@@ -1459,46 +1434,30 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
def test_sample_generate(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
max_length=max_length,
)
# check `generate()` and `sample()` are equal
output_generate = self._sample_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
num_return_sequences=1,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
)
self.assertIsInstance(output_generate, torch.Tensor)
def test_sample_generate_dict_output(self):
for model_class in self.greedy_sample_model_classes:
# disable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
max_length=max_length,
)
output_generate = self._sample_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
num_return_sequences=3,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......@@ -1508,7 +1467,7 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
def test_generate_without_input_ids(self):
config, _, _, max_length = self._get_input_ids_and_config()
config, _, _ = self._get_input_ids_and_config()
# if no bos token id => cannot generate from None
if config.bos_token_id is None:
......@@ -1518,7 +1477,9 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
model = model_class(config).to(torch_device)
model.eval()
output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True)
output_ids_generate = model.generate(
do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True
)
self.assertIsNotNone(output_ids_generate)
@require_torch_fp16
......@@ -1537,7 +1498,7 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
def test_greedy_generate_stereo_outputs(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.audio_channels = 2
model = model_class(config).to(torch_device).eval()
......@@ -1545,7 +1506,6 @@ class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......
......@@ -246,34 +246,28 @@ class MusicgenMelodyDecoderTest(ModelTesterMixin, GenerationTesterMixin, unittes
sequence_length = input_ids.shape[-1]
input_ids = input_ids[: batch_size * config.num_codebooks, :]
# generate max 3 tokens
max_length = input_ids.shape[-1] + 3
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long)
return config, input_ids, attention_mask, max_length
return config, input_ids, attention_mask
@staticmethod
def _get_logits_processor_and_warper_kwargs(
input_length,
forced_bos_token_id=None,
forced_eos_token_id=None,
max_length=None,
):
process_kwargs = {
"min_length": input_length + 1 if max_length is None else max_length - 1,
}
process_kwargs = {}
warper_kwargs = {}
return process_kwargs, warper_kwargs
def test_greedy_generate_stereo_outputs(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.audio_channels = 2
model = model_class(config).to(torch_device).eval()
output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......@@ -1309,9 +1303,7 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
input_ids = input_ids[:batch_size, :]
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long)
# generate max 3 tokens
max_length = 3
return config, input_ids, attention_mask, max_length
return config, input_ids, attention_mask
# override since the `input_ids` cannot be used as the `decoder_input_ids` for musicgen_melody (input / outputs are
# different modalities -> different shapes)
......@@ -1320,29 +1312,22 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
model,
input_ids,
attention_mask,
max_length,
output_scores=False,
output_attentions=False,
output_hidden_states=False,
return_dict_in_generate=False,
):
logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
max_length=max_length,
)
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
output_generate = model.generate(
input_ids,
do_sample=False,
num_beams=1,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
remove_invalid_values=True,
**logits_process_kwargs,
**model_kwargs,
)
......@@ -1355,10 +1340,7 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
model,
input_ids,
attention_mask,
max_length,
num_return_sequences,
logits_warper_kwargs,
process_kwargs,
output_scores=False,
output_attentions=False,
output_hidden_states=False,
......@@ -1370,15 +1352,13 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
input_ids,
do_sample=True,
num_beams=1,
max_length=max_length,
max_new_tokens=self.max_new_tokens,
num_return_sequences=num_return_sequences,
output_scores=output_scores,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict_in_generate=return_dict_in_generate,
remove_invalid_values=True,
**logits_warper_kwargs,
**process_kwargs,
**model_kwargs,
)
......@@ -1389,25 +1369,21 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
input_length,
forced_bos_token_id=None,
forced_eos_token_id=None,
max_length=None,
):
process_kwargs = {
"min_length": input_length + 1 if max_length is None else max_length - 1,
}
process_kwargs = {}
warper_kwargs = {}
return process_kwargs, warper_kwargs
def test_greedy_generate_dict_outputs(self):
for model_class in self.greedy_sample_model_classes:
# disable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......@@ -1421,7 +1397,7 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
def test_greedy_generate_dict_outputs_use_cache(self):
for model_class in self.greedy_sample_model_classes:
# enable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = True
config.is_decoder = True
......@@ -1430,7 +1406,6 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......@@ -1441,46 +1416,30 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
def test_sample_generate(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
max_length=max_length,
)
# check `generate()` and `sample()` are equal
output_generate = self._sample_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
num_return_sequences=1,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
)
self.assertIsInstance(output_generate, torch.Tensor)
def test_sample_generate_dict_output(self):
for model_class in self.greedy_sample_model_classes:
# disable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
input_ids.shape[-1],
max_length=max_length,
)
output_generate = self._sample_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
num_return_sequences=3,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......@@ -1490,7 +1449,7 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
def test_generate_without_input_ids(self):
config, _, _, max_length = self._get_input_ids_and_config()
config, _, _ = self._get_input_ids_and_config()
# if no bos token id => cannot generate from None
if config.bos_token_id is None:
......@@ -1500,7 +1459,9 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
model = model_class(config).to(torch_device)
model.eval()
output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True)
output_ids_generate = model.generate(
do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True
)
self.assertIsNotNone(output_ids_generate)
@require_torch_fp16
......@@ -1519,7 +1480,7 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
def test_greedy_generate_stereo_outputs(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config, input_ids, attention_mask = self._get_input_ids_and_config()
config.audio_channels = 2
model = model_class(config).to(torch_device).eval()
......@@ -1527,7 +1488,6 @@ class MusicgenMelodyTest(ModelTesterMixin, GenerationTesterMixin, PipelineTester
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
......
......@@ -686,6 +686,18 @@ class ReformerLocalAttnModelTest(ReformerTesterMixin, GenerationTesterMixin, Mod
def test_left_padding_compatibility(self):
pass
def _get_input_ids_and_config(self, batch_size=2):
# override because overwise we hit max possible seq length for model (4*8=32)
# decreasing the seq_length in tester causes errors for "training_tests", those need exactly max seq length
# NOTE: seq_length has to be multiple of 4, otherwise it fails for other tests
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict[self.input_name]
input_ids = input_ids[:batch_size, :16]
attention_mask = torch.ones_like(input_ids, dtype=torch.long)[:batch_size, :16]
config.eos_token_id = None
config.forced_eos_token_id = None
return config, input_ids, attention_mask
@require_torch
class ReformerLSHAttnModelTest(
......
......@@ -285,7 +285,7 @@ class Speech2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTest
input_name = "input_features"
def _get_input_ids_and_config(self, batch_size=2):
config, input_ids, attention_mask, max_length = GenerationTesterMixin._get_input_ids_and_config(self)
config, input_ids, attention_mask = GenerationTesterMixin._get_input_ids_and_config(self)
# `input_ids` is actually `input_features` which is a 3D tensor.
# We must overwrite the mask to make it 2D since the original `_get_input_ids_and_config` creates an
......@@ -294,7 +294,7 @@ class Speech2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTest
sequence_length = input_ids.shape[1]
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=attention_mask.device)
return config, input_ids, attention_mask, max_length
return config, input_ids, attention_mask
def setUp(self):
self.model_tester = Speech2TextModelTester(self)
......
......@@ -477,13 +477,11 @@ class WhisperModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMi
# cut to half length & take max batch_size=batch_size
input_ids = input_ids[:batch_size, :, :]
# generate max 3 tokens
max_length = 4
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
config.pad_token_id = config.eos_token_id
return config, input_ids, None, max_length
return config, input_ids, None
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
......
......@@ -646,7 +646,8 @@ class XLNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixi
seq_len = 1
else:
# for first item dummy PAD token is appended so need one more
seq_len = (min_length + 1) if idx == 0 else min_length
# else offset+dummy_token when using cache
seq_len = (min_length + 1) if idx == 0 else 3
expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
self.assertEqual(layer_hidden_states.shape, expected_shape)
......@@ -665,8 +666,11 @@ class XLNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixi
tgt_len = min_length
# for first item dummy PAD token is appended so need one more
# every token after consists of offset+dummy_token length when using cache
if idx == 0:
tgt_len += 1
else:
tgt_len = 3
src_len = min_length + idx + 1
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment