Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
b175fc39
Unverified
Commit
b175fc39
authored
Aug 10, 2023
by
NielsRogge
Committed by
GitHub
Aug 10, 2023
Browse files
[DINOv2] Update pooler output (#25392)
Update pooler output
parent
d0c1aebe
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
5 additions
and
22 deletions
+5
-22
src/transformers/models/dinov2/modeling_dinov2.py
src/transformers/models/dinov2/modeling_dinov2.py
+5
-22
No files found.
src/transformers/models/dinov2/modeling_dinov2.py
View file @
b175fc39
...
...
@@ -583,7 +583,7 @@ DINOV2_INPUTS_DOCSTRING = r"""
DINOV2_START_DOCSTRING
,
)
class
Dinov2Model
(
Dinov2PreTrainedModel
):
def
__init__
(
self
,
config
:
Dinov2Config
,
add_pooling_layer
:
bool
=
True
):
def
__init__
(
self
,
config
:
Dinov2Config
):
super
().
__init__
(
config
)
self
.
config
=
config
...
...
@@ -591,7 +591,6 @@ class Dinov2Model(Dinov2PreTrainedModel):
self
.
encoder
=
Dinov2Encoder
(
config
)
self
.
layernorm
=
nn
.
LayerNorm
(
config
.
hidden_size
,
eps
=
config
.
layer_norm_eps
)
self
.
pooler
=
Dinov2Pooler
(
config
)
if
add_pooling_layer
else
None
# Initialize weights and apply final processing
self
.
post_init
()
...
...
@@ -651,10 +650,10 @@ class Dinov2Model(Dinov2PreTrainedModel):
)
sequence_output
=
encoder_outputs
[
0
]
sequence_output
=
self
.
layernorm
(
sequence_output
)
pooled_output
=
self
.
pooler
(
sequence_output
)
if
self
.
pooler
is
not
None
else
None
pooled_output
=
sequence_output
[:,
0
,
:]
if
not
return_dict
:
head_outputs
=
(
sequence_output
,
pooled_output
)
if
pooled_output
is
not
None
else
(
sequence_output
,)
head_outputs
=
(
sequence_output
,
pooled_output
)
return
head_outputs
+
encoder_outputs
[
1
:]
return
BaseModelOutputWithPooling
(
...
...
@@ -665,22 +664,6 @@ class Dinov2Model(Dinov2PreTrainedModel):
)
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->Dinov2
class
Dinov2Pooler
(
nn
.
Module
):
def
__init__
(
self
,
config
:
Dinov2Config
):
super
().
__init__
()
self
.
dense
=
nn
.
Linear
(
config
.
hidden_size
,
config
.
hidden_size
)
self
.
activation
=
nn
.
Tanh
()
def
forward
(
self
,
hidden_states
):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor
=
hidden_states
[:,
0
]
pooled_output
=
self
.
dense
(
first_token_tensor
)
pooled_output
=
self
.
activation
(
pooled_output
)
return
pooled_output
@
add_start_docstrings
(
"""
Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
...
...
@@ -693,7 +676,7 @@ class Dinov2ForImageClassification(Dinov2PreTrainedModel):
super
().
__init__
(
config
)
self
.
num_labels
=
config
.
num_labels
self
.
dinov2
=
Dinov2Model
(
config
,
add_pooling_layer
=
False
)
self
.
dinov2
=
Dinov2Model
(
config
)
# Classifier head
self
.
classifier
=
(
...
...
@@ -770,7 +753,7 @@ class Dinov2ForImageClassification(Dinov2PreTrainedModel):
loss
=
loss_fct
(
logits
,
labels
)
if
not
return_dict
:
output
=
(
logits
,)
+
outputs
[
1
:]
output
=
(
logits
,)
+
outputs
[
2
:]
return
((
loss
,)
+
output
)
if
loss
is
not
None
else
output
return
ImageClassifierOutput
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment