Unverified Commit b0f0086f authored by Alissa's avatar Alissa Committed by GitHub
Browse files

Add OPT resources to the transformers documentation (#21625)

* Add resources to OPT

* Add additional resources for OPT

* Remove -{" "} after <PipelineTag pipeline="question-answering" />

* Change bitsnbytes to bitsandbytes

* Revert formatting

* Revert automatic format changes

* Remove - sign after <PipelineTag pipeline="question-answering" />
parent 61d7fec8
......@@ -17,7 +17,6 @@ specific language governing permissions and limitations under the License.
The OPT model was proposed in [Open Pre-trained Transformer Language Models](https://arxiv.org/pdf/2205.01068) by Meta AI.
OPT is a series of open-sourced large causal language models which perform similar in performance to GPT3.
The abstract from the paper is the following:
*Large language models, which are often trained for hundreds of thousands of compute days, have shown remarkable capabilities for zero- and few-shot learning. Given their computational cost, these models are difficult to replicate without significant capital. For the few that are available through APIs, no access is granted to the full model weights, making them difficult to study. We present Open Pre-trained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M to 175B parameters, which we aim to fully and responsibly share with interested researchers. We show that OPT-175B is comparable to GPT-3, while requiring only 1/7th the carbon footprint to develop. We are also releasing our logbook detailing the infrastructure challenges we faced, along with code for experimenting with all of the released models.*
......@@ -29,6 +28,35 @@ Tips:
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Younes Belkada](https://huggingface.co/ybelkada), and [Patrick Von Platen](https://huggingface.co/patrickvonplaten).
The original code can be found [here](https://github.com/facebookresearch/metaseq).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with OPT. If you're
interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it.
The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-generation" />
- A notebook on [fine-tuning OPT with PEFT, bitsandbytes, and Transformers](https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing). 🌎
- A blog post on [decoding strategies with OPT](https://huggingface.co/blog/introducing-csearch#62-example-two---opt).
- [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course.
- [`OPTForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFOPTForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxOPTForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#causal-language-modeling).
<PipelineTag pipeline="text-classification" />
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
- [`OPTForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
<PipelineTag pipeline="question-answering" />
- [`OPTForQuestionAnswering`] is supported by this [question answering example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter
of the 🤗 Hugging Face Course.
⚡️ Inference
- A blog bost on [How 🤗 Accelerate runs very large models thanks to PyTorch](https://huggingface.co/blog/accelerate-large-models) with OPT.
## OPTConfig
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment