Unverified Commit b0d539cc authored by Jannis Vamvas's avatar Jannis Vamvas Committed by GitHub
Browse files

Add X-MOD (#20939)



* Add X-MOD to Readme

* Add documentation for X-MOD

* Implement X-MOD

* Fix formatting of X-MOD docs

* Change signature of X-MOD forward methods to use lang_ids

* Minor changes

* Rebase with main and run make fix-copies

* Make suggested changes to docstrings

* Improve code readability
Co-authored-by: default avatarYounes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Fix code style

* Conversion script: Remove asserts and type annotations

* Remove _TOKENIZER_FOR_DOC

* XMOD -> Xmod

* Update copyright note

* Fix doctests

* Fix docstring

* Add integration test for FillMaskPipeline

* Revert "Add integration test for FillMaskPipeline"

This reverts commit 4381eb3b1d0f5d85785f89caba83928e6efa6d1f.

* Add end-to-end integration test for mask fill

* make style

* Rebase with main and make fix-copies

---------
Co-authored-by: default avatarYounes Belkada <49240599+younesbelkada@users.noreply.github.com>
parent adb2503e
...@@ -184,6 +184,7 @@ MODEL_MAPPING_NAMES = OrderedDict( ...@@ -184,6 +184,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("xlm-roberta", "XLMRobertaModel"), ("xlm-roberta", "XLMRobertaModel"),
("xlm-roberta-xl", "XLMRobertaXLModel"), ("xlm-roberta-xl", "XLMRobertaXLModel"),
("xlnet", "XLNetModel"), ("xlnet", "XLNetModel"),
("xmod", "XmodModel"),
("yolos", "YolosModel"), ("yolos", "YolosModel"),
("yoso", "YosoModel"), ("yoso", "YosoModel"),
] ]
...@@ -244,6 +245,7 @@ MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict( ...@@ -244,6 +245,7 @@ MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
("xlm-roberta", "XLMRobertaForMaskedLM"), ("xlm-roberta", "XLMRobertaForMaskedLM"),
("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"), ("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"),
("xlnet", "XLNetLMHeadModel"), ("xlnet", "XLNetLMHeadModel"),
("xmod", "XmodForMaskedLM"),
] ]
) )
...@@ -317,6 +319,7 @@ MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict( ...@@ -317,6 +319,7 @@ MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
("xlm-roberta", "XLMRobertaForMaskedLM"), ("xlm-roberta", "XLMRobertaForMaskedLM"),
("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"), ("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"),
("xlnet", "XLNetLMHeadModel"), ("xlnet", "XLNetLMHeadModel"),
("xmod", "XmodForMaskedLM"),
("yoso", "YosoForMaskedLM"), ("yoso", "YosoForMaskedLM"),
] ]
) )
...@@ -371,6 +374,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict( ...@@ -371,6 +374,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("xlm-roberta", "XLMRobertaForCausalLM"), ("xlm-roberta", "XLMRobertaForCausalLM"),
("xlm-roberta-xl", "XLMRobertaXLForCausalLM"), ("xlm-roberta-xl", "XLMRobertaXLForCausalLM"),
("xlnet", "XLNetLMHeadModel"), ("xlnet", "XLNetLMHeadModel"),
("xmod", "XmodForCausalLM"),
] ]
) )
...@@ -531,6 +535,7 @@ MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict( ...@@ -531,6 +535,7 @@ MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
("xlm", "XLMWithLMHeadModel"), ("xlm", "XLMWithLMHeadModel"),
("xlm-roberta", "XLMRobertaForMaskedLM"), ("xlm-roberta", "XLMRobertaForMaskedLM"),
("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"), ("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"),
("xmod", "XmodForMaskedLM"),
("yoso", "YosoForMaskedLM"), ("yoso", "YosoForMaskedLM"),
] ]
) )
...@@ -658,6 +663,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( ...@@ -658,6 +663,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("xlm-roberta", "XLMRobertaForSequenceClassification"), ("xlm-roberta", "XLMRobertaForSequenceClassification"),
("xlm-roberta-xl", "XLMRobertaXLForSequenceClassification"), ("xlm-roberta-xl", "XLMRobertaXLForSequenceClassification"),
("xlnet", "XLNetForSequenceClassification"), ("xlnet", "XLNetForSequenceClassification"),
("xmod", "XmodForSequenceClassification"),
("yoso", "YosoForSequenceClassification"), ("yoso", "YosoForSequenceClassification"),
] ]
) )
...@@ -714,6 +720,7 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( ...@@ -714,6 +720,7 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
("xlm-roberta", "XLMRobertaForQuestionAnswering"), ("xlm-roberta", "XLMRobertaForQuestionAnswering"),
("xlm-roberta-xl", "XLMRobertaXLForQuestionAnswering"), ("xlm-roberta-xl", "XLMRobertaXLForQuestionAnswering"),
("xlnet", "XLNetForQuestionAnsweringSimple"), ("xlnet", "XLNetForQuestionAnsweringSimple"),
("xmod", "XmodForQuestionAnswering"),
("yoso", "YosoForQuestionAnswering"), ("yoso", "YosoForQuestionAnswering"),
] ]
) )
...@@ -785,6 +792,7 @@ MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict( ...@@ -785,6 +792,7 @@ MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("xlm-roberta", "XLMRobertaForTokenClassification"), ("xlm-roberta", "XLMRobertaForTokenClassification"),
("xlm-roberta-xl", "XLMRobertaXLForTokenClassification"), ("xlm-roberta-xl", "XLMRobertaXLForTokenClassification"),
("xlnet", "XLNetForTokenClassification"), ("xlnet", "XLNetForTokenClassification"),
("xmod", "XmodForTokenClassification"),
("yoso", "YosoForTokenClassification"), ("yoso", "YosoForTokenClassification"),
] ]
) )
...@@ -825,6 +833,7 @@ MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict( ...@@ -825,6 +833,7 @@ MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict(
("xlm-roberta", "XLMRobertaForMultipleChoice"), ("xlm-roberta", "XLMRobertaForMultipleChoice"),
("xlm-roberta-xl", "XLMRobertaXLForMultipleChoice"), ("xlm-roberta-xl", "XLMRobertaXLForMultipleChoice"),
("xlnet", "XLNetForMultipleChoice"), ("xlnet", "XLNetForMultipleChoice"),
("xmod", "XmodForMultipleChoice"),
("yoso", "YosoForMultipleChoice"), ("yoso", "YosoForMultipleChoice"),
] ]
) )
......
...@@ -325,6 +325,13 @@ else: ...@@ -325,6 +325,13 @@ else:
"XLNetTokenizerFast" if is_tokenizers_available() else None, "XLNetTokenizerFast" if is_tokenizers_available() else None,
), ),
), ),
(
"xmod",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
( (
"yoso", "yoso",
( (
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_xmod": [
"XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XmodConfig",
"XmodOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_xmod"] = [
"XMOD_PRETRAINED_MODEL_ARCHIVE_LIST",
"XmodForCausalLM",
"XmodForMaskedLM",
"XmodForMultipleChoice",
"XmodForQuestionAnswering",
"XmodForSequenceClassification",
"XmodForTokenClassification",
"XmodModel",
"XmodPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
# coding=utf-8
# Copyright 2023 The Meta AI Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" X-MOD configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"jvamvas/xmod-base": "https://huggingface.co/jvamvas/xmod-base/resolve/main/config.json",
"jvamvas/xmod-large-prenorm": "https://huggingface.co/jvamvas/xmod-large-prenorm/resolve/main/config.json",
"jvamvas/xmod-base-13-125k": "https://huggingface.co/jvamvas/xmod-base-13-125k/resolve/main/config.json",
"jvamvas/xmod-base-30-125k": "https://huggingface.co/jvamvas/xmod-base-30-125k/resolve/main/config.json",
"jvamvas/xmod-base-30-195k": "https://huggingface.co/jvamvas/xmod-base-30-195k/resolve/main/config.json",
"jvamvas/xmod-base-60-125k": "https://huggingface.co/jvamvas/xmod-base-60-125k/resolve/main/config.json",
"jvamvas/xmod-base-60-265k": "https://huggingface.co/jvamvas/xmod-base-60-265k/resolve/main/config.json",
"jvamvas/xmod-base-75-125k": "https://huggingface.co/jvamvas/xmod-base-75-125k/resolve/main/config.json",
"jvamvas/xmod-base-75-269k": "https://huggingface.co/jvamvas/xmod-base-75-269k/resolve/main/config.json",
}
class XmodConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`XmodModel`]. It is used to instantiate an X-MOD
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [xmod-base](https://huggingface.co/jvamvas/xmod-base)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the X-MOD model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`XmodModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`XmodModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
pre_norm (`bool`, *optional*, defaults to `False`):
Whether to apply layer normalization before each block.
adapter_reduction_factor (`int` or `float`, *optional*, defaults to 2):
The factor by which the dimensionality of the adapter is reduced relative to `hidden_size`.
adapter_layer_norm (`bool`, *optional*, defaults to `False`):
Whether to apply a new layer normalization before the adapter modules (shared across all adapters).
adapter_reuse_layer_norm (`bool`, *optional*, defaults to `True`):
Whether to reuse the second layer normalization and apply it before the adapter modules as well.
ln_before_adapter (`bool`, *optional*, defaults to `True`):
Whether to apply the layer normalization before the residual connection around the adapter module.
languages (`Iterable[str]`, *optional*, defaults to `["en_XX"]`):
An iterable of language codes for which adapter modules should be initialized.
default_language (`str`, *optional*):
Language code of a default language. It will be assumed that the input is in this language if no language
codes are explicitly passed to the forward method.
Examples:
```python
>>> from transformers import XmodConfig, XmodModel
>>> # Initializing an X-MOD jvamvas/xmod-base style configuration
>>> configuration = XmodConfig()
>>> # Initializing a model (with random weights) from the jvamvas/xmod-base style configuration
>>> model = XmodModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "xmod"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
pre_norm=False,
adapter_reduction_factor=2,
adapter_layer_norm=False,
adapter_reuse_layer_norm=True,
ln_before_adapter=True,
languages=("en_XX",),
default_language=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
self.pre_norm = pre_norm
self.adapter_reduction_factor = adapter_reduction_factor
self.adapter_layer_norm = adapter_layer_norm
self.adapter_reuse_layer_norm = adapter_reuse_layer_norm
self.ln_before_adapter = ln_before_adapter
self.languages = list(languages)
self.default_language = default_language
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->Xmod
class XmodOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert X-MOD checkpoint."""
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("0.12.2"):
raise Exception("requires fairseq >= 0.12.2")
if version.parse(fairseq.__version__) > version.parse("2"):
raise Exception("requires fairseq < v2")
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
SAMPLE_TEXT = "Hello, World!"
SAMPLE_LANGUAGE = "en_XX"
def convert_xmod_checkpoint_to_pytorch(
xmod_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool
):
data_dir = Path("data_bin")
xmod = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(xmod_checkpoint_path).parent),
checkpoint_file=Path(xmod_checkpoint_path).name,
_name="xmod_base",
arch="xmod_base",
task="multilingual_masked_lm",
data_name_or_path=str(data_dir),
bpe="sentencepiece",
sentencepiece_model=str(Path(xmod_checkpoint_path).parent / "sentencepiece.bpe.model"),
src_dict=str(data_dir / "dict.txt"),
)
xmod.eval() # disable dropout
print(xmod)
xmod_sent_encoder = xmod.model.encoder.sentence_encoder
config = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings,
hidden_size=xmod.cfg.model.encoder_embed_dim,
num_hidden_layers=xmod.cfg.model.encoder_layers,
num_attention_heads=xmod.cfg.model.encoder_attention_heads,
intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim,
max_position_embeddings=514,
type_vocab_size=1,
layer_norm_eps=1e-5, # PyTorch default used in fairseq
pre_norm=xmod.cfg.model.encoder_normalize_before,
adapter_reduction_factor=getattr(xmod.cfg.model, "bottleneck", 2),
adapter_layer_norm=xmod.cfg.model.adapter_layer_norm,
adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm,
ln_before_adapter=xmod.cfg.model.ln_before_adapter,
languages=xmod.cfg.model.languages,
)
if classification_head:
config.num_labels = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our X-MOD config:", config)
model = XmodForSequenceClassification(config) if classification_head else XmodForMaskedLM(config)
model.eval()
# Now let's copy all the weights.
# Embeddings
model.roberta.embeddings.word_embeddings.weight = xmod_sent_encoder.embed_tokens.weight
model.roberta.embeddings.position_embeddings.weight = xmod_sent_encoder.embed_positions.weight
model.roberta.embeddings.token_type_embeddings.weight.data = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight
) # just zero them out b/c xmod doesn't use them.
model.roberta.embeddings.LayerNorm.weight = xmod_sent_encoder.layernorm_embedding.weight
model.roberta.embeddings.LayerNorm.bias = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers):
# Encoder: start of layer
layer = model.roberta.encoder.layer[i]
xmod_layer = xmod_sent_encoder.layers[i]
# self attention
self_attn = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size))
):
raise AssertionError("Dimensions of self-attention weights do not match.")
self_attn.query.weight.data = xmod_layer.self_attn.q_proj.weight
self_attn.query.bias.data = xmod_layer.self_attn.q_proj.bias
self_attn.key.weight.data = xmod_layer.self_attn.k_proj.weight
self_attn.key.bias.data = xmod_layer.self_attn.k_proj.bias
self_attn.value.weight.data = xmod_layer.self_attn.v_proj.weight
self_attn.value.bias.data = xmod_layer.self_attn.v_proj.bias
# self-attention output
self_output = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("Dimensions of self-attention output weights do not match.")
self_output.dense.weight = xmod_layer.self_attn.out_proj.weight
self_output.dense.bias = xmod_layer.self_attn.out_proj.bias
self_output.LayerNorm.weight = xmod_layer.self_attn_layer_norm.weight
self_output.LayerNorm.bias = xmod_layer.self_attn_layer_norm.bias
# intermediate
intermediate = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fc1.weight.shape:
raise AssertionError("Dimensions of intermediate weights do not match.")
intermediate.dense.weight = xmod_layer.fc1.weight
intermediate.dense.bias = xmod_layer.fc1.bias
# output
bert_output = layer.output
if bert_output.dense.weight.shape != xmod_layer.fc2.weight.shape:
raise AssertionError("Dimensions of feed-forward weights do not match.")
bert_output.dense.weight = xmod_layer.fc2.weight
bert_output.dense.bias = xmod_layer.fc2.bias
bert_output.LayerNorm.weight = xmod_layer.final_layer_norm.weight
bert_output.LayerNorm.bias = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
bert_output.adapter_layer_norm.weight = xmod_layer.adapter_layer_norm.weight
bert_output.adapter_layer_norm.bias = xmod_layer.adapter_layer_norm.bias
if list(sorted(bert_output.adapter_modules.keys())) != list(sorted(xmod_layer.adapter_modules.keys())):
raise AssertionError("Lists of language adapters do not match.")
for lang_code, adapter in xmod_layer.adapter_modules.items():
to_adapter = bert_output.adapter_modules[lang_code]
from_adapter = xmod_layer.adapter_modules[lang_code]
to_adapter.dense1.weight = from_adapter.fc1.weight
to_adapter.dense1.bias = from_adapter.fc1.bias
to_adapter.dense2.weight = from_adapter.fc2.weight
to_adapter.dense2.bias = from_adapter.fc2.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
model.roberta.encoder.LayerNorm.weight = xmod_sent_encoder.layer_norm.weight
model.roberta.encoder.LayerNorm.bias = xmod_sent_encoder.layer_norm.bias
if classification_head:
model.classifier.dense.weight = xmod.model.classification_heads["mnli"].dense.weight
model.classifier.dense.bias = xmod.model.classification_heads["mnli"].dense.bias
model.classifier.out_proj.weight = xmod.model.classification_heads["mnli"].out_proj.weight
model.classifier.out_proj.bias = xmod.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
model.lm_head.dense.weight = xmod.model.encoder.lm_head.dense.weight
model.lm_head.dense.bias = xmod.model.encoder.lm_head.dense.bias
model.lm_head.layer_norm.weight = xmod.model.encoder.lm_head.layer_norm.weight
model.lm_head.layer_norm.bias = xmod.model.encoder.lm_head.layer_norm.bias
model.lm_head.decoder.weight = xmod.model.encoder.lm_head.weight
model.lm_head.decoder.bias = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
input_ids = xmod.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1
model.roberta.set_default_language(SAMPLE_LANGUAGE)
our_output = model(input_ids)[0]
if classification_head:
their_output = xmod.model.classification_heads["mnli"](xmod.extract_features(input_ids))
else:
their_output = xmod.model(input_ids, lang_id=[SAMPLE_LANGUAGE])[0]
print(our_output.shape, their_output.shape)
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7
success = torch.allclose(our_output, their_output, atol=1e-3)
print("Do both models output the same tensors?", "🔥" if success else "💩")
if not success:
raise Exception("Something went wRoNg")
Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
args = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
# coding=utf-8
# Copyright 2023 Meta AI Team and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch X-MOD model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN, gelu
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_xmod import XmodConfig
logger = logging.get_logger(__name__)
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST = [
"jvamvas/xmod-base",
"jvamvas/xmod-large-prenorm",
"jvamvas/xmod-base-13-125k",
"jvamvas/xmod-base-30-125k",
"jvamvas/xmod-base-30-195k",
"jvamvas/xmod-base-60-125k",
"jvamvas/xmod-base-60-265k",
"jvamvas/xmod-base-75-125k",
"jvamvas/xmod-base-75-269k",
# See all X-MOD models at https://huggingface.co/models?filter=xmod
]
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Xmod
class XmodEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
# End copy
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Xmod
class XmodSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in XmodModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class XmodSelfOutput(nn.Module):
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput.__init__
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class XmodAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = XmodSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = XmodSelfOutput(config)
self.pruned_heads = set()
self.pre_norm = config.pre_norm
# Copied from transformers.models.roberta.modeling_roberta.RobertaAttention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
residual = hidden_states
if self.pre_norm:
hidden_states = self.output.LayerNorm(hidden_states)
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], residual)
if not self.pre_norm:
attention_output = self.output.LayerNorm(attention_output)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate
class XmodIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class XmodAdapter(nn.Module):
def __init__(self, config):
super().__init__()
self.bottleneck_size = config.hidden_size // config.adapter_reduction_factor
self.dense1 = nn.Linear(config.hidden_size, self.bottleneck_size)
self.dense2 = nn.Linear(self.bottleneck_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.adapter_act_fn = ACT2FN[config.hidden_act]
else:
self.adapter_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense1(hidden_states)
hidden_states = self.adapter_act_fn(hidden_states)
hidden_states = self.dense2(hidden_states)
return hidden_states
class XmodOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.ln_before_adapter = config.ln_before_adapter
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if config.adapter_layer_norm:
self.adapter_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
else:
self.adapter_layer_norm = None
self.adapter_reuse_layer_norm = config.adapter_reuse_layer_norm
self.adapter_modules = nn.ModuleDict(dict())
for language in config.languages:
self.adapter_modules[str(language)] = XmodAdapter(config)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, lang_ids: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
hidden_states = self.lang_adapter(lang_ids, hidden_states)
return hidden_states
def lang_adapter(self, lang_ids: torch.Tensor, hidden_states: torch.Tensor):
# Process subsequent samples with the same lang_id in parallel
lang_ids, lang_lengths = torch.unique_consecutive(lang_ids, return_counts=True)
if not self.ln_before_adapter:
residual = hidden_states
if self.adapter_layer_norm is not None:
hidden_states = self.adapter_layer_norm(hidden_states)
elif self.adapter_reuse_layer_norm:
hidden_states = self.LayerNorm(hidden_states)
if self.ln_before_adapter:
residual = hidden_states
split_hidden_states = torch.split(hidden_states, lang_lengths.tolist(), 0)
lang_wise_outputs = []
for i, (lang_id, split_hidden_state) in enumerate(zip(lang_ids, split_hidden_states)):
lang = list(self.adapter_modules.keys())[int(lang_id.item())]
lang_wise_outputs.append(self.adapter_modules[lang](split_hidden_state))
hidden_states = torch.cat(lang_wise_outputs, 0)
hidden_states = self.dropout(hidden_states)
hidden_states += residual
return hidden_states
class XmodLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = XmodAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = XmodAttention(config, position_embedding_type="absolute")
self.intermediate = XmodIntermediate(config)
self.output = XmodOutput(config)
self.pre_norm = config.pre_norm
def forward(
self,
hidden_states: torch.Tensor,
lang_ids: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
residual = attention_output
if self.pre_norm:
attention_output = self.output.LayerNorm(attention_output)
intermediate_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
layer_output = self.output(intermediate_output, residual, lang_ids)
if not self.pre_norm:
layer_output = self.output.LayerNorm(layer_output)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
return self.intermediate(attention_output)
class XmodEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([XmodLayer(config) for _ in range(config.num_hidden_layers)])
self.is_pre_norm = config.pre_norm
if self.is_pre_norm:
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
lang_ids: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
lang_ids,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
lang_ids,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if self.is_pre_norm:
hidden_states = self.LayerNorm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaPooler
class XmodPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class XmodPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XmodConfig
base_model_prefix = "roberta"
supports_gradient_checkpointing = True
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel._set_gradient_checkpointing with Roberta->Xmod
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, XmodEncoder):
module.gradient_checkpointing = value
# Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel.update_keys_to_ignore
def update_keys_to_ignore(self, config, del_keys_to_ignore):
"""Remove some keys from ignore list"""
if not config.tie_word_embeddings:
# must make a new list, or the class variable gets modified!
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore]
self._keys_to_ignore_on_load_missing = [
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore
]
def set_default_language(self, language: str):
"""
Set the default language code for the model. This is used when the language is not specified in the input.
Args:
language (`str`): The language code, such as `"en_XX"` or `"de_DE"`.
"""
if language not in self.config.languages:
raise ValueError(
f"{self} does not have an adapter for {language}. Supported languages: {list(self.config.languages)}"
)
self.config.default_language = language
def freeze_embeddings_and_language_adapters(self):
"""
Freeze the embeddings and language adapters of the model. Usually, this is applied before the model is
fine-tuned on a downstream task.
"""
logger.info("Freezing embeddings")
for parameter in self.roberta.embeddings.parameters():
parameter.requires_grad = False
logger.info("Freezing adapters")
for layer in self.roberta.encoder.layer:
if layer.output.adapter_layer_norm is not None:
for parameter in layer.output.adapter_layer_norm.parameters():
parameter.requires_grad = False
for parameter in layer.output.adapter_modules.parameters():
parameter.requires_grad = False
XMOD_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`XmodConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
XMOD_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
lang_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare X-MOD Model transformer outputting raw hidden-states without any specific head on top.",
XMOD_START_DOCSTRING,
)
class XmodModel(XmodPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
"""
_keys_to_ignore_on_load_missing = [r"position_ids"]
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Xmod
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = XmodEmbeddings(config)
self.encoder = XmodEncoder(config)
self.pooler = XmodPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel.get_input_embeddings
def get_input_embeddings(self):
return self.embeddings.word_embeddings
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel.set_input_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors:
of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if lang_ids is None:
if self.config.default_language is None:
raise ValueError("Input language unknown. Please call `XmodPreTrainedModel.set_default_language()`")
adapter_languages = list(self.encoder.layer[0].output.adapter_modules.keys())
default_lang_id = adapter_languages.index(self.config.default_language)
lang_ids = default_lang_id * torch.ones(batch_size, device=device)
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
lang_ids=lang_ids,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"X-MOD Model with a `language modeling` head on top for CLM fine-tuning.",
XMOD_START_DOCSTRING,
)
class XmodForCausalLM(XmodPreTrainedModel):
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_unexpected = [r"pooler"]
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `XmodLMHeadModel` as a standalone, add `is_decoder=True.`")
self.roberta = XmodModel(config, add_pooling_layer=False)
self.lm_head = XmodLMHead(config)
# The LM head weights require special treatment only when they are tied with the word embeddings
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head.decoder
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns: `transformers.modeling_outputs.CausalLMOutputWithCrossAttentions` or `tuple(torch.FloatTensor)`
Example:
```python
>>> from transformers import AutoTokenizer, XmodForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
>>> config = AutoConfig.from_pretrained("jvamvas/xmod-base")
>>> config.is_decoder = True
>>> model = XmodForCausalLM.from_pretrained("jvamvas/xmod-base", config=config)
>>> model.set_default_language("en_XX")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.prepare_inputs_for_generation
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
@add_start_docstrings(
"""X-MOD Model with a `language modeling` head on top.""",
XMOD_START_DOCSTRING,
)
class XmodForMaskedLM(XmodPreTrainedModel):
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_unexpected = [r"pooler"]
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `XmodForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.roberta = XmodModel(config, add_pooling_layer=False)
self.lm_head = XmodLMHead(config)
# The LM head weights require special treatment only when they are tied with the word embeddings
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head.decoder
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead
class XmodLMHead(nn.Module):
"""Roberta Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
self.bias = self.decoder.bias
@add_start_docstrings(
"""
X-MOD Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
XMOD_START_DOCSTRING,
)
class XmodForSequenceClassification(XmodPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.roberta = XmodModel(config, add_pooling_layer=False)
self.classifier = XmodClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
X-MOD Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
XMOD_START_DOCSTRING,
)
class XmodForMultipleChoice(XmodPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
self.roberta = XmodModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_lang_ids = lang_ids.repeat(input_ids.size(0) * input_ids.size(1)) if lang_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.roberta(
flat_input_ids,
lang_ids=flat_lang_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
X-MOD Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
XMOD_START_DOCSTRING,
)
class XmodForTokenClassification(XmodPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
# Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = XmodModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead
class XmodClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
X-MOD Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
XMOD_START_DOCSTRING,
)
class XmodForQuestionAnswering(XmodPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
# Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = XmodModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
...@@ -6937,6 +6937,65 @@ def load_tf_weights_in_xlnet(*args, **kwargs): ...@@ -6937,6 +6937,65 @@ def load_tf_weights_in_xlnet(*args, **kwargs):
requires_backends(load_tf_weights_in_xlnet, ["torch"]) requires_backends(load_tf_weights_in_xlnet, ["torch"])
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XmodForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST = None YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import XLMRobertaTokenizer, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
XmodConfig,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
)
from transformers.models.xmod.modeling_xmod import XmodEmbeddings, create_position_ids_from_input_ids
class XmodModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return XmodConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
default_language="en_XX",
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XmodModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = XmodModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = XmodForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = XmodForCausalLM(config=config).to(torch_device).eval()
# make sure that ids don't start with pad token
mask = input_ids.ne(config.pad_token_id).long()
input_ids = input_ids * mask
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
# make sure that ids don't start with pad token
mask = next_tokens.ne(config.pad_token_id).long()
next_tokens = next_tokens * mask
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XmodForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = XmodForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = XmodForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XmodForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class XmodModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
(
XmodForCausalLM,
XmodForMaskedLM,
XmodModel,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodForMultipleChoice,
XmodForQuestionAnswering,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (XmodForCausalLM,) if is_torch_available() else ()
def setUp(self):
self.model_tester = XmodModelTester(self)
self.config_tester = ConfigTester(self, config_class=XmodConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_decoder_model_past_with_large_inputs_relative_pos_emb(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
config_and_inputs[0].position_embedding_type = "relative_key"
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_create_position_ids_respects_padding_index(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is XmodEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
model = XmodEmbeddings(config=config)
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
expected_positions = torch.as_tensor(
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
)
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
def test_create_position_ids_from_inputs_embeds(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is XmodEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
embeddings = XmodEmbeddings(config=config)
inputs_embeds = torch.empty(2, 4, 30)
expected_single_positions = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
def test_set_default_language(self):
config = self.model_tester.prepare_config_and_inputs()[0]
model = XmodForMaskedLM(config=config)
model.set_default_language("en_XX")
self.assertEqual(model.config.default_language, "en_XX")
with self.assertRaises(ValueError):
model.set_default_language("xx_XX")
def test_freeze_embeddings_and_language_adapters(self):
config = self.model_tester.prepare_config_and_inputs()[0]
model = XmodForMaskedLM(config=config)
num_trainable_params_before = sum(p.numel() for p in model.parameters() if p.requires_grad)
model.freeze_embeddings_and_language_adapters()
num_trainable_params_after = sum(p.numel() for p in model.parameters() if p.requires_grad)
self.assertLess(num_trainable_params_after, num_trainable_params_before)
@require_sentencepiece
@require_tokenizers
@require_torch
class XmodModelIntegrationTest(unittest.TestCase):
@slow
def test_xmod_base(self):
model = XmodModel.from_pretrained("jvamvas/xmod-base")
# language en_XX
model.set_default_language("en_XX")
input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
expected_output_shape = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
expected_output_values_last_dim = torch.tensor(
[[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724]]
)
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
# language de_DE
model.set_default_language("de_DE")
input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]])
# Der Hund ist niedlich und wohnt in einem Gartenhaus.
expected_output_shape = torch.Size((1, 16, 768)) # batch_size, sequence_length, embedding_vector_dim
# fmt: off
expected_output_values_last_dim = torch.tensor(
[[0.0162, 0.0075, -0.1882, 0.2335, -0.0952, -0.3994, -0.0317, -0.1174, 0.0177, 0.4280, -0.0240, -0.2138,
0.0785, -0.1045, -0.2811, -0.3220]]
)
# fmt: on
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
@slow
def test_xmod_large_prenorm(self):
model = XmodModel.from_pretrained("jvamvas/xmod-large-prenorm")
# language en_XX
model.set_default_language("en_XX")
input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]])
# The dog is cute and lives in the garden house
expected_output_shape = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
# fmt: off
expected_output_values_last_dim = torch.tensor(
[[-0.0121, -0.0194, -0.0240, -0.0160, -0.0205, -0.0159, -0.0243, -0.0206, -0.0161, -0.0335, -0.0196,
-0.0141]]
)
# fmt: on
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
# language de_DE
model.set_default_language("de_DE")
input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]])
# Der Hund ist niedlich und wohnt in einem Gartenhaus.
expected_output_shape = torch.Size((1, 16, 1024)) # batch_size, sequence_length, embedding_vector_dim
# fmt: off
expected_output_values_last_dim = torch.tensor(
[[-0.0120, -0.0262, -0.0253, -0.0112, -0.0128, -0.0164, -0.0080, -0.0081, -0.0192, -0.0117, -0.0170,
-0.0120, -0.0210, -0.0173, -0.0078, -0.0122]]
)
# fmt: on
output = model(input_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
@slow
def test_multilingual_batch(self):
model = XmodModel.from_pretrained("jvamvas/xmod-base")
# fmt: off
input_ids = torch.tensor([
[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2],
[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2],
[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2],
[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2],
])
# fmt: on
lang_ids = torch.LongTensor([0, 8, 8, 0])
expected_output_shape = torch.Size((4, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
# fmt: off
expected_output_values_last_dim = torch.tensor([
[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724],
[-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407],
[-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407],
[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724],
])
# fmt: on
output = model(input_ids, lang_ids=lang_ids)["last_hidden_state"].detach()
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
@slow
def test_end_to_end_mask_fill(self):
tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base")
model = XmodForMaskedLM.from_pretrained("jvamvas/xmod-base", default_language="en_XX")
model.to(torch_device)
sentences = [
"Hello, my dog is a little <mask>.",
"Hi <mask>!",
]
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].to(torch_device)
outputs = model(
input_ids=input_ids,
attention_mask=inputs["attention_mask"].to(torch_device),
)
probs = outputs.logits.softmax(dim=-1)
_, predictions = probs.topk(1)
predictions = predictions.squeeze(-1)
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
output_non_padded = model(input_ids=inputs_non_padded)
probs_non_padded = output_non_padded.logits.softmax(dim=-1)
_, predictions_non_padded = probs_non_padded.topk(1)
predictions_non_padded = predictions_non_padded.squeeze(-1)
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
output_padded = model(input_ids=inputs_padded)
probs_padded = output_padded.logits.softmax(dim=-1)
_, predictions_padded = probs_padded.topk(1)
predictions_padded = predictions_padded.squeeze(-1)
batch_out_sentence = tokenizer.batch_decode(predictions, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(predictions_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(predictions_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little girl.",
"Hi everyone!",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
...@@ -217,6 +217,8 @@ src/transformers/models/xlm/configuration_xlm.py ...@@ -217,6 +217,8 @@ src/transformers/models/xlm/configuration_xlm.py
src/transformers/models/xlm_roberta/configuration_xlm_roberta.py src/transformers/models/xlm_roberta/configuration_xlm_roberta.py
src/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py src/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py
src/transformers/models/xlnet/configuration_xlnet.py src/transformers/models/xlnet/configuration_xlnet.py
src/transformers/models/xmod/configuration_xmod.py
src/transformers/models/xmod/modeling_xmod.py
src/transformers/models/yolos/configuration_yolos.py src/transformers/models/yolos/configuration_yolos.py
src/transformers/models/yolos/modeling_yolos.py src/transformers/models/yolos/modeling_yolos.py
src/transformers/models/x_clip/modeling_x_clip.py src/transformers/models/x_clip/modeling_x_clip.py
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment