Unverified Commit ae454f41 authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

Update old existing feature extractor references (#24552)

* Update old existing feature extractor references

* Typo

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Address comments from review - update 'feature extractor'
Co-authored by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
parent 10c2ac7b
......@@ -574,9 +574,9 @@ class MaskFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
self.assertEqual(segmentation[0].shape, target_sizes[0])
def test_post_process_instance_segmentation(self):
feature_extractor = self.image_processing_class(num_labels=self.image_processor_tester.num_classes)
image_processor = self.image_processing_class(num_labels=self.image_processor_tester.num_classes)
outputs = self.image_processor_tester.get_fake_maskformer_outputs()
segmentation = feature_extractor.post_process_instance_segmentation(outputs, threshold=0)
segmentation = image_processor.post_process_instance_segmentation(outputs, threshold=0)
self.assertTrue(len(segmentation) == self.image_processor_tester.batch_size)
for el in segmentation:
......@@ -587,7 +587,7 @@ class MaskFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
el["segmentation"].shape, (self.image_processor_tester.height, self.image_processor_tester.width)
)
segmentation = feature_extractor.post_process_instance_segmentation(
segmentation = image_processor.post_process_instance_segmentation(
outputs, threshold=0, return_binary_maps=True
)
......
......@@ -35,7 +35,7 @@ if is_torch_available():
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerFeatureExtractor
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
......@@ -326,18 +326,18 @@ def prepare_img():
@slow
class MaskFormerModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return (
MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-small-coco")
MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco")
if is_vision_available()
else None
)
def test_inference_no_head(self):
model = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco").to(torch_device)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(image, return_tensors="pt").to(torch_device)
inputs = image_processor(image, return_tensors="pt").to(torch_device)
inputs_shape = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0)
......@@ -380,9 +380,9 @@ class MaskFormerModelIntegrationTest(unittest.TestCase):
.to(torch_device)
.eval()
)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(image, return_tensors="pt").to(torch_device)
inputs = image_processor(image, return_tensors="pt").to(torch_device)
inputs_shape = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0)
......@@ -424,9 +424,9 @@ class MaskFormerModelIntegrationTest(unittest.TestCase):
.to(torch_device)
.eval()
)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(image, return_tensors="pt").to(torch_device)
inputs = image_processor(image, return_tensors="pt").to(torch_device)
inputs_shape = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0)
......@@ -460,9 +460,9 @@ class MaskFormerModelIntegrationTest(unittest.TestCase):
.to(torch_device)
.eval()
)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
inputs = feature_extractor(
inputs = image_processor(
[np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))],
segmentation_maps=[np.zeros((384, 384)).astype(np.float32), np.zeros((384, 384)).astype(np.float32)],
return_tensors="pt",
......
......@@ -64,7 +64,7 @@ class MgpstrProcessorTest(unittest.TestCase):
image_processor_map = {
"do_normalize": False,
"do_resize": True,
"feature_extractor_type": "ViTFeatureExtractor",
"image_processor_type": "ViTImageProcessor",
"resample": 3,
"size": {"height": 32, "width": 128},
}
......
......@@ -37,7 +37,7 @@ if is_torch_available():
if is_vision_available():
from PIL import Image
from transformers import MobileNetV1FeatureExtractor
from transformers import MobileNetV1ImageProcessor
class MobileNetV1ConfigTester(ConfigTester):
......@@ -240,20 +240,18 @@ def prepare_img():
@require_vision
class MobileNetV1ModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return (
MobileNetV1FeatureExtractor.from_pretrained("google/mobilenet_v1_1.0_224")
if is_vision_available()
else None
MobileNetV1ImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224") if is_vision_available() else None
)
@slow
def test_inference_image_classification_head(self):
model = MobileNetV1ForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224").to(torch_device)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......
......@@ -37,7 +37,7 @@ if is_torch_available():
if is_vision_available():
from PIL import Image
from transformers import MobileNetV2FeatureExtractor
from transformers import MobileNetV2ImageProcessor
class MobileNetV2ConfigTester(ConfigTester):
......@@ -295,20 +295,18 @@ def prepare_img():
@require_vision
class MobileNetV2ModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return (
MobileNetV2FeatureExtractor.from_pretrained("google/mobilenet_v2_1.0_224")
if is_vision_available()
else None
MobileNetV2ImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224") if is_vision_available() else None
)
@slow
def test_inference_image_classification_head(self):
model = MobileNetV2ForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224").to(torch_device)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......@@ -327,10 +325,10 @@ class MobileNetV2ModelIntegrationTest(unittest.TestCase):
model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
model = model.to(torch_device)
feature_extractor = MobileNetV2FeatureExtractor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
image_processor = MobileNetV2ImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......
......@@ -37,7 +37,7 @@ if is_torch_available():
if is_vision_available():
from PIL import Image
from transformers import MobileViTFeatureExtractor
from transformers import MobileViTImageProcessor
class MobileViTConfigTester(ConfigTester):
......@@ -298,16 +298,16 @@ def prepare_img():
@require_vision
class MobileViTModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
return MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-xx-small") if is_vision_available() else None
def default_image_processor(self):
return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small").to(torch_device)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......@@ -326,10 +326,10 @@ class MobileViTModelIntegrationTest(unittest.TestCase):
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
model = model.to(torch_device)
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image_processor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......@@ -356,10 +356,10 @@ class MobileViTModelIntegrationTest(unittest.TestCase):
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
model = model.to(torch_device)
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image_processor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......@@ -367,10 +367,10 @@ class MobileViTModelIntegrationTest(unittest.TestCase):
outputs.logits = outputs.logits.detach().cpu()
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(50, 60)])
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(50, 60)])
expected_shape = torch.Size((50, 60))
self.assertEqual(segmentation[0].shape, expected_shape)
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs)
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
expected_shape = torch.Size((32, 32))
self.assertEqual(segmentation[0].shape, expected_shape)
......@@ -40,7 +40,7 @@ if is_tf_available():
if is_vision_available():
from PIL import Image
from transformers import MobileViTFeatureExtractor
from transformers import MobileViTImageProcessor
class TFMobileViTConfigTester(ConfigTester):
......@@ -381,9 +381,9 @@ class TFMobileViTModelIntegrationTest(unittest.TestCase):
def test_inference_image_classification_head(self):
model = TFMobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small")
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-xx-small")
image_processor = MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small")
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="tf")
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(**inputs, training=False)
......@@ -401,10 +401,10 @@ class TFMobileViTModelIntegrationTest(unittest.TestCase):
# `from_pt` will be removed
model = TFMobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image_processor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="tf")
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(inputs.pixel_values, training=False)
......
......@@ -364,16 +364,16 @@ class NatModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
@require_torch
class NatModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = NatForImageClassification.from_pretrained("shi-labs/nat-mini-in1k-224").to(torch_device)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......
......@@ -61,7 +61,7 @@ if is_torch_available():
if is_vision_available():
from PIL import Image
from transformers import PerceiverFeatureExtractor
from transformers import PerceiverImageProcessor
class PerceiverModelTester:
......@@ -899,13 +899,13 @@ class PerceiverModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_classification(self):
feature_extractor = PerceiverFeatureExtractor()
image_processor = PerceiverImageProcessor()
model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned")
model.to(torch_device)
# prepare inputs
image = prepare_img()
inputs = feature_extractor(image, return_tensors="pt").pixel_values.to(torch_device)
inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device)
input_mask = None
# forward pass
......@@ -923,13 +923,13 @@ class PerceiverModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_classification_fourier(self):
feature_extractor = PerceiverFeatureExtractor()
image_processor = PerceiverImageProcessor()
model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier")
model.to(torch_device)
# prepare inputs
image = prepare_img()
inputs = feature_extractor(image, return_tensors="pt").pixel_values.to(torch_device)
inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device)
input_mask = None
# forward pass
......@@ -947,13 +947,13 @@ class PerceiverModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_classification_conv(self):
feature_extractor = PerceiverFeatureExtractor()
image_processor = PerceiverImageProcessor()
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
model.to(torch_device)
# prepare inputs
image = prepare_img()
inputs = feature_extractor(image, return_tensors="pt").pixel_values.to(torch_device)
inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device)
input_mask = None
# forward pass
......
......@@ -37,7 +37,7 @@ if is_torch_available():
if is_vision_available():
from PIL import Image
from transformers import PoolFormerFeatureExtractor
from transformers import PoolFormerImageProcessor
class PoolFormerConfigTester(ConfigTester):
......@@ -237,10 +237,10 @@ def prepare_img():
class PoolFormerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_classification_head(self):
feature_extractor = PoolFormerFeatureExtractor()
image_processor = PoolFormerImageProcessor()
model = PoolFormerForImageClassification.from_pretrained("sail/poolformer_s12").to(torch_device)
inputs = feature_extractor(images=prepare_img(), return_tensors="pt").to(torch_device)
inputs = image_processor(images=prepare_img(), return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......
......@@ -33,7 +33,7 @@ if is_flax_available():
if is_vision_available():
from PIL import Image
from transformers import AutoFeatureExtractor
from transformers import AutoImageProcessor
class FlaxRegNetModelTester(unittest.TestCase):
......@@ -215,16 +215,16 @@ def prepare_img():
@require_flax
class FlaxRegNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
return AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="np")
inputs = image_processor(images=image, return_tensors="np")
outputs = model(**inputs)
......
......@@ -38,7 +38,7 @@ if is_torch_available():
if is_vision_available():
from PIL import Image
from transformers import AutoFeatureExtractor
from transformers import AutoImageProcessor
class RegNetModelTester:
......@@ -248,9 +248,9 @@ def prepare_img():
@require_vision
class RegNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return (
AutoFeatureExtractor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
......@@ -259,9 +259,9 @@ class RegNetModelIntegrationTest(unittest.TestCase):
def test_inference_image_classification_head(self):
model = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......
......@@ -38,7 +38,7 @@ if is_tf_available():
if is_vision_available():
from PIL import Image
from transformers import AutoFeatureExtractor
from transformers import AutoImageProcessor
class TFRegNetModelTester:
......@@ -267,9 +267,9 @@ def prepare_img():
@require_vision
class RegNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return (
AutoFeatureExtractor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
......@@ -278,9 +278,9 @@ class RegNetModelIntegrationTest(unittest.TestCase):
def test_inference_image_classification_head(self):
model = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="tf")
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(**inputs, training=False)
......
......@@ -32,7 +32,7 @@ if is_flax_available():
if is_vision_available():
from PIL import Image
from transformers import AutoFeatureExtractor
from transformers import AutoImageProcessor
class FlaxResNetModelTester(unittest.TestCase):
......@@ -206,16 +206,16 @@ def prepare_img():
@require_flax
class FlaxResNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
return AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") if is_vision_available() else None
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("microsoft/resnet-50") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = FlaxResNetForImageClassification.from_pretrained("microsoft/resnet-50")
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="np")
inputs = image_processor(images=image, return_tensors="np")
outputs = model(**inputs)
......
......@@ -39,7 +39,7 @@ if is_torch_available():
if is_vision_available():
from PIL import Image
from transformers import AutoFeatureExtractor
from transformers import AutoImageProcessor
class ResNetModelTester:
......@@ -301,9 +301,9 @@ def prepare_img():
@require_vision
class ResNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return (
AutoFeatureExtractor.from_pretrained(RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
AutoImageProcessor.from_pretrained(RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
......@@ -312,9 +312,9 @@ class ResNetModelIntegrationTest(unittest.TestCase):
def test_inference_image_classification_head(self):
model = ResNetForImageClassification.from_pretrained(RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......
......@@ -41,7 +41,7 @@ if is_tf_available():
if is_vision_available():
from PIL import Image
from transformers import AutoFeatureExtractor
from transformers import AutoImageProcessor
class TFResNetModelTester:
......@@ -229,9 +229,9 @@ def prepare_img():
@require_vision
class TFResNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return (
AutoFeatureExtractor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
......@@ -240,9 +240,9 @@ class TFResNetModelIntegrationTest(unittest.TestCase):
def test_inference_image_classification_head(self):
model = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="tf")
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(**inputs)
......
......@@ -42,7 +42,7 @@ if is_torch_available():
if is_vision_available():
from PIL import Image
from transformers import SegformerFeatureExtractor
from transformers import SegformerImageProcessor
class SegformerConfigTester(ConfigTester):
......@@ -365,7 +365,7 @@ class SegformerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_segmentation_ade(self):
# only resize + normalize
feature_extractor = SegformerFeatureExtractor(
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to(
......@@ -373,7 +373,7 @@ class SegformerModelIntegrationTest(unittest.TestCase):
)
image = prepare_img()
encoded_inputs = feature_extractor(images=image, return_tensors="pt")
encoded_inputs = image_processor(images=image, return_tensors="pt")
pixel_values = encoded_inputs.pixel_values.to(torch_device)
with torch.no_grad():
......@@ -394,7 +394,7 @@ class SegformerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_segmentation_city(self):
# only resize + normalize
feature_extractor = SegformerFeatureExtractor(
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
model = SegformerForSemanticSegmentation.from_pretrained(
......@@ -402,7 +402,7 @@ class SegformerModelIntegrationTest(unittest.TestCase):
).to(torch_device)
image = prepare_img()
encoded_inputs = feature_extractor(images=image, return_tensors="pt")
encoded_inputs = image_processor(images=image, return_tensors="pt")
pixel_values = encoded_inputs.pixel_values.to(torch_device)
with torch.no_grad():
......@@ -423,7 +423,7 @@ class SegformerModelIntegrationTest(unittest.TestCase):
@slow
def test_post_processing_semantic_segmentation(self):
# only resize + normalize
feature_extractor = SegformerFeatureExtractor(
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to(
......@@ -431,7 +431,7 @@ class SegformerModelIntegrationTest(unittest.TestCase):
)
image = prepare_img()
encoded_inputs = feature_extractor(images=image, return_tensors="pt")
encoded_inputs = image_processor(images=image, return_tensors="pt")
pixel_values = encoded_inputs.pixel_values.to(torch_device)
with torch.no_grad():
......@@ -439,10 +439,10 @@ class SegformerModelIntegrationTest(unittest.TestCase):
outputs.logits = outputs.logits.detach().cpu()
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
expected_shape = torch.Size((500, 300))
self.assertEqual(segmentation[0].shape, expected_shape)
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs)
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
expected_shape = torch.Size((128, 128))
self.assertEqual(segmentation[0].shape, expected_shape)
......@@ -39,7 +39,7 @@ if is_tf_available():
if is_vision_available():
from PIL import Image
from transformers import SegformerFeatureExtractor
from transformers import SegformerImageProcessor
class TFSegformerConfigTester(ConfigTester):
......@@ -454,13 +454,13 @@ class TFSegformerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_segmentation_ade(self):
# only resize + normalize
feature_extractor = SegformerFeatureExtractor(
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
image = prepare_img()
encoded_inputs = feature_extractor(images=image, return_tensors="tf")
encoded_inputs = image_processor(images=image, return_tensors="tf")
pixel_values = encoded_inputs.pixel_values
outputs = model(pixel_values, training=False)
......@@ -480,7 +480,7 @@ class TFSegformerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_segmentation_city(self):
# only resize + normalize
feature_extractor = SegformerFeatureExtractor(
image_processor = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
......@@ -488,7 +488,7 @@ class TFSegformerModelIntegrationTest(unittest.TestCase):
)
image = prepare_img()
encoded_inputs = feature_extractor(images=image, return_tensors="tf")
encoded_inputs = image_processor(images=image, return_tensors="tf")
pixel_values = encoded_inputs.pixel_values
outputs = model(pixel_values, training=False)
......
......@@ -283,16 +283,16 @@ def prepare_img():
@require_vision
class SwiftFormerModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs").to(torch_device)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = prepare_img()
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......
......@@ -39,7 +39,7 @@ if is_torch_available():
if is_vision_available():
from PIL import Image
from transformers import AutoFeatureExtractor
from transformers import AutoImageProcessor
class SwinModelTester:
......@@ -482,9 +482,9 @@ class SwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
@require_torch
class SwinModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
def default_image_processor(self):
return (
AutoFeatureExtractor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
if is_vision_available()
else None
)
......@@ -492,10 +492,10 @@ class SwinModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_classification_head(self):
model = SwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224").to(torch_device)
feature_extractor = self.default_feature_extractor
image_processor = self.default_image_processor
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment