Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
aca6288f
Unverified
Commit
aca6288f
authored
Feb 27, 2021
by
Bhadresh Savani
Committed by
GitHub
Feb 27, 2021
Browse files
updated logging and saving metrics (#10436)
* updated logging and saving metrics * space removal
parent
f52a1589
Changes
12
Show whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
71 additions
and
191 deletions
+71
-191
examples/language-modeling/run_clm.py
examples/language-modeling/run_clm.py
+6
-16
examples/language-modeling/run_mlm.py
examples/language-modeling/run_mlm.py
+6
-17
examples/language-modeling/run_plm.py
examples/language-modeling/run_plm.py
+6
-17
examples/multiple-choice/run_swag.py
examples/multiple-choice/run_swag.py
+8
-17
examples/multiple-choice/run_tf_multiple_choice.py
examples/multiple-choice/run_tf_multiple_choice.py
+4
-8
examples/question-answering/run_qa.py
examples/question-answering/run_qa.py
+8
-17
examples/question-answering/run_qa_beam_search.py
examples/question-answering/run_qa_beam_search.py
+8
-17
examples/text-classification/run_glue.py
examples/text-classification/run_glue.py
+5
-17
examples/text-classification/run_tf_glue.py
examples/text-classification/run_tf_glue.py
+3
-11
examples/text-classification/run_tf_text_classification.py
examples/text-classification/run_tf_text_classification.py
+3
-11
examples/text-classification/run_xnli.py
examples/text-classification/run_xnli.py
+6
-20
examples/token-classification/run_ner.py
examples/token-classification/run_ner.py
+8
-23
No files found.
examples/language-modeling/run_clm.py
View file @
aca6288f
...
...
@@ -375,16 +375,11 @@ def main():
train_result
=
trainer
.
train
(
resume_from_checkpoint
=
checkpoint
)
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
output_train_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"train_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_train_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Train results *****"
)
for
key
,
value
in
sorted
(
train_result
.
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
metrics
=
train_result
.
metrics
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer
.
state
.
save_to_json
(
os
.
path
.
join
(
training_args
.
output_dir
,
"trainer_state.json"
))
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
results
=
{}
...
...
@@ -396,13 +391,8 @@ def main():
perplexity
=
math
.
exp
(
eval_output
[
"eval_loss"
])
results
[
"perplexity"
]
=
perplexity
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results_clm.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
sorted
(
results
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"eval"
,
results
)
trainer
.
save_metrics
(
"eval"
,
results
)
return
results
...
...
examples/language-modeling/run_mlm.py
View file @
aca6288f
...
...
@@ -411,17 +411,11 @@ def main():
checkpoint
=
None
train_result
=
trainer
.
train
(
resume_from_checkpoint
=
checkpoint
)
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
metrics
=
train_result
.
metrics
output_train_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"train_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_train_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Train results *****"
)
for
key
,
value
in
sorted
(
train_result
.
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer
.
state
.
save_to_json
(
os
.
path
.
join
(
training_args
.
output_dir
,
"trainer_state.json"
))
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
results
=
{}
...
...
@@ -433,13 +427,8 @@ def main():
perplexity
=
math
.
exp
(
eval_output
[
"eval_loss"
])
results
[
"perplexity"
]
=
perplexity
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results_mlm.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
sorted
(
results
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"eval"
,
results
)
trainer
.
save_metrics
(
"eval"
,
results
)
return
results
...
...
examples/language-modeling/run_plm.py
View file @
aca6288f
...
...
@@ -392,17 +392,11 @@ def main():
checkpoint
=
None
train_result
=
trainer
.
train
(
resume_from_checkpoint
=
checkpoint
)
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
metrics
=
train_result
.
metrics
output_train_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"train_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_train_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Train results *****"
)
for
key
,
value
in
sorted
(
train_result
.
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer
.
state
.
save_to_json
(
os
.
path
.
join
(
training_args
.
output_dir
,
"trainer_state.json"
))
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
results
=
{}
...
...
@@ -414,13 +408,8 @@ def main():
perplexity
=
math
.
exp
(
eval_output
[
"eval_loss"
])
results
[
"perplexity"
]
=
perplexity
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results_plm.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
sorted
(
results
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"eval"
,
results
)
trainer
.
save_metrics
(
"eval"
,
results
)
return
results
...
...
examples/multiple-choice/run_swag.py
View file @
aca6288f
...
...
@@ -227,6 +227,8 @@ def main():
# Set the verbosity to info of the Transformers logger (on main process only):
if
is_main_process
(
training_args
.
local_rank
):
transformers
.
utils
.
logging
.
set_verbosity_info
()
transformers
.
utils
.
logging
.
enable_default_handler
()
transformers
.
utils
.
logging
.
enable_explicit_format
()
logger
.
info
(
"Training/evaluation parameters %s"
,
training_args
)
# Set seed before initializing model.
...
...
@@ -367,17 +369,11 @@ def main():
checkpoint
=
None
train_result
=
trainer
.
train
(
resume_from_checkpoint
=
checkpoint
)
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
metrics
=
train_result
.
metrics
output_train_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"train_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_train_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Train results *****"
)
for
key
,
value
in
sorted
(
train_result
.
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer
.
state
.
save_to_json
(
os
.
path
.
join
(
training_args
.
output_dir
,
"trainer_state.json"
))
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
results
=
{}
...
...
@@ -386,13 +382,8 @@ def main():
results
=
trainer
.
evaluate
()
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results_swag.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
sorted
(
results
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"eval"
,
results
)
trainer
.
save_metrics
(
"eval"
,
results
)
return
results
...
...
examples/multiple-choice/run_tf_multiple_choice.py
View file @
aca6288f
...
...
@@ -206,12 +206,8 @@ def main():
result
=
trainer
.
evaluate
()
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results.txt"
)
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
result
.
items
():
logger
.
info
(
" %s = %s"
,
key
,
value
)
writer
.
write
(
"%s = %s
\n
"
%
(
key
,
value
))
trainer
.
log_metrics
(
"eval"
,
results
)
trainer
.
save_metrics
(
"eval"
,
results
)
results
.
update
(
result
)
...
...
examples/question-answering/run_qa.py
View file @
aca6288f
...
...
@@ -201,6 +201,8 @@ def main():
# Set the verbosity to info of the Transformers logger (on main process only):
if
is_main_process
(
training_args
.
local_rank
):
transformers
.
utils
.
logging
.
set_verbosity_info
()
transformers
.
utils
.
logging
.
enable_default_handler
()
transformers
.
utils
.
logging
.
enable_explicit_format
()
logger
.
info
(
"Training/evaluation parameters %s"
,
training_args
)
# Set seed before initializing model.
...
...
@@ -479,16 +481,10 @@ def main():
train_result
=
trainer
.
train
(
resume_from_checkpoint
=
checkpoint
)
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
output_train_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"train_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_train_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Train results *****"
)
for
key
,
value
in
sorted
(
train_result
.
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer
.
state
.
save_to_json
(
os
.
path
.
join
(
training_args
.
output_dir
,
"trainer_state.json"
))
metrics
=
train_result
.
metrics
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
results
=
{}
...
...
@@ -496,13 +492,8 @@ def main():
logger
.
info
(
"*** Evaluate ***"
)
results
=
trainer
.
evaluate
()
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
sorted
(
results
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"eval"
,
results
)
trainer
.
save_metrics
(
"eval"
,
results
)
return
results
...
...
examples/question-answering/run_qa_beam_search.py
View file @
aca6288f
...
...
@@ -200,6 +200,8 @@ def main():
# Set the verbosity to info of the Transformers logger (on main process only):
if
is_main_process
(
training_args
.
local_rank
):
transformers
.
utils
.
logging
.
set_verbosity_info
()
transformers
.
utils
.
logging
.
enable_default_handler
()
transformers
.
utils
.
logging
.
enable_explicit_format
()
logger
.
info
(
"Training/evaluation parameters %s"
,
training_args
)
# Set seed before initializing model.
...
...
@@ -518,16 +520,10 @@ def main():
train_result
=
trainer
.
train
(
resume_from_checkpoint
=
checkpoint
)
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
output_train_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"train_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_train_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Train results *****"
)
for
key
,
value
in
sorted
(
train_result
.
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer
.
state
.
save_to_json
(
os
.
path
.
join
(
training_args
.
output_dir
,
"trainer_state.json"
))
metrics
=
train_result
.
metrics
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
results
=
{}
...
...
@@ -535,13 +531,8 @@ def main():
logger
.
info
(
"*** Evaluate ***"
)
results
=
trainer
.
evaluate
()
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
sorted
(
results
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"eval"
,
results
)
trainer
.
save_metrics
(
"eval"
,
results
)
return
results
...
...
examples/text-classification/run_glue.py
View file @
aca6288f
...
...
@@ -417,16 +417,9 @@ def main():
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
output_train_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"train_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_train_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Train results *****"
)
for
key
,
value
in
sorted
(
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer
.
state
.
save_to_json
(
os
.
path
.
join
(
training_args
.
output_dir
,
"trainer_state.json"
))
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
eval_results
=
{}
...
...
@@ -443,13 +436,8 @@ def main():
for
eval_dataset
,
task
in
zip
(
eval_datasets
,
tasks
):
eval_result
=
trainer
.
evaluate
(
eval_dataset
=
eval_dataset
)
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
f
"eval_results_
{
task
}
.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
f
"***** Eval results
{
task
}
*****"
)
for
key
,
value
in
sorted
(
eval_result
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"eval"
,
eval_result
)
trainer
.
save_metrics
(
"eval"
,
eval_result
)
eval_results
.
update
(
eval_result
)
...
...
examples/text-classification/run_tf_glue.py
View file @
aca6288f
...
...
@@ -247,17 +247,9 @@ def main():
results
=
{}
if
training_args
.
do_eval
:
logger
.
info
(
"*** Evaluate ***"
)
result
=
trainer
.
evaluate
()
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results.txt"
)
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
result
.
items
():
logger
.
info
(
" %s = %s"
,
key
,
value
)
writer
.
write
(
"%s = %s
\n
"
%
(
key
,
value
))
trainer
.
log_metrics
(
"eval"
,
result
)
trainer
.
save_metrics
(
"eval"
,
result
)
results
.
update
(
result
)
return
results
...
...
examples/text-classification/run_tf_text_classification.py
View file @
aca6288f
...
...
@@ -293,17 +293,9 @@ def main():
results
=
{}
if
training_args
.
do_eval
:
logger
.
info
(
"*** Evaluate ***"
)
result
=
trainer
.
evaluate
()
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results.txt"
)
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
result
.
items
():
logger
.
info
(
" %s = %s"
,
key
,
value
)
writer
.
write
(
"%s = %s
\n
"
%
(
key
,
value
))
trainer
.
log_metrics
(
"eval"
,
result
)
trainer
.
save_metrics
(
"eval"
,
result
)
results
.
update
(
result
)
return
results
...
...
examples/text-classification/run_xnli.py
View file @
aca6288f
...
...
@@ -291,33 +291,19 @@ def main():
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
output_train_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"train_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_train_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Train results *****"
)
for
key
,
value
in
sorted
(
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer
.
state
.
save_to_json
(
os
.
path
.
join
(
training_args
.
output_dir
,
"trainer_state.json"
))
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
eval_results
=
{}
if
training_args
.
do_eval
:
logger
.
info
(
"*** Evaluate ***"
)
eval_result
=
trainer
.
evaluate
(
eval_dataset
=
eval_dataset
)
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results_xnli.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results xnli *****"
)
for
key
,
value
in
sorted
(
eval_result
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"eval"
,
eval_result
)
trainer
.
save_metrics
(
"eval"
,
eval_result
)
eval_results
.
update
(
eval_result
)
return
eval_results
...
...
examples/token-classification/run_ner.py
View file @
aca6288f
...
...
@@ -387,18 +387,12 @@ def main():
else
:
checkpoint
=
None
train_result
=
trainer
.
train
(
resume_from_checkpoint
=
checkpoint
)
metrics
=
train_result
.
metrics
trainer
.
save_model
()
# Saves the tokenizer too for easy upload
output_train_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"train_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_train_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Train results *****"
)
for
key
,
value
in
sorted
(
train_result
.
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer
.
state
.
save_to_json
(
os
.
path
.
join
(
training_args
.
output_dir
,
"trainer_state.json"
))
trainer
.
log_metrics
(
"train"
,
metrics
)
trainer
.
save_metrics
(
"train"
,
metrics
)
trainer
.
save_state
()
# Evaluation
results
=
{}
...
...
@@ -407,13 +401,8 @@ def main():
results
=
trainer
.
evaluate
()
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"eval_results_ner.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
,
value
in
results
.
items
():
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"eval"
,
results
)
trainer
.
save_metrics
(
"eval"
,
results
)
# Predict
if
training_args
.
do_predict
:
...
...
@@ -429,12 +418,8 @@ def main():
for
prediction
,
label
in
zip
(
predictions
,
labels
)
]
output_test_results_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"test_results.txt"
)
if
trainer
.
is_world_process_zero
():
with
open
(
output_test_results_file
,
"w"
)
as
writer
:
for
key
,
value
in
sorted
(
metrics
.
items
()):
logger
.
info
(
f
"
{
key
}
=
{
value
}
"
)
writer
.
write
(
f
"
{
key
}
=
{
value
}
\n
"
)
trainer
.
log_metrics
(
"test"
,
metrics
)
trainer
.
save_metrics
(
"test"
,
metrics
)
# Save predictions
output_test_predictions_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"test_predictions.txt"
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment