Unverified Commit ac588594 authored by Matt's avatar Matt Committed by GitHub
Browse files

Merge new TF example script (#11360)

First of the new and more idiomatic TF examples!
parent 9f72e8f4
......@@ -39,4 +39,3 @@ Coming soon!
| **`text-generation`** | n/a | - | n/a | -
| **`token-classification`** | CoNLL NER | - | - | -
| **`translation`** | WMT | - | - | -
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
......@@ -16,52 +16,50 @@ limitations under the License.
# Text classification examples
## GLUE tasks
Based on the script [`run_tf_glue.py`](https://github.com/huggingface/transformers/blob/master/examples/tensorflow/text-classification/run_tf_glue.py).
Fine-tuning the library TensorFlow 2.0 Bert model for sequence classification on the MRPC task of the GLUE benchmark: [General Language Understanding Evaluation](https://gluebenchmark.com/).
This script has an option for mixed precision (Automatic Mixed Precision / AMP) to run models on Tensor Cores (NVIDIA Volta/Turing GPUs) and future hardware and an option for XLA, which uses the XLA compiler to reduce model runtime.
Options are toggled using `USE_XLA` or `USE_AMP` variables in the script.
These options and the below benchmark are provided by @tlkh.
Quick benchmarks from the script (no other modifications):
| GPU | Mode | Time (2nd epoch) | Val Acc (3 runs) |
| --------- | -------- | ----------------------- | ----------------------|
| Titan V | FP32 | 41s | 0.8438/0.8281/0.8333 |
| Titan V | AMP | 26s | 0.8281/0.8568/0.8411 |
| V100 | FP32 | 35s | 0.8646/0.8359/0.8464 |
| V100 | AMP | 22s | 0.8646/0.8385/0.8411 |
| 1080 Ti | FP32 | 55s | - |
Mixed precision (AMP) reduces the training time considerably for the same hardware and hyper-parameters (same batch size was used).
This folder contains some scripts showing examples of *text classification* with the 🤗 Transformers library.
For straightforward use-cases you may be able to use these scripts without modification, although we have also
included comments in the code to indicate areas that you may need to adapt to your own projects.
## run_text_classification.py
This script handles perhaps the single most common use-case for this entire library: Training an NLP classifier
on your own training data. This can be whatever you want - you could classify text as abusive/hateful or
allowable, or forum posts as spam or not-spam, or classify the genre of a headline as politics, sports or any
number of other categories. Any task that involves classifying natural language into two or more different categories
can work with this! You can even do regression, such as predicting the score on a 1-10 scale that a user gave,
given the text of their review.
The preferred input format is either a CSV or newline-delimited JSON file that contains a `sentence1` and
`label` field, and optionally a `sentence2` field, if your task involves comparing two texts (for example, if your classifier
is deciding whether two sentences are paraphrases of each other, or were written by the same author). If
you do not have a `sentence1` field, the script will assume the non-label fields are the input text, which
may not always be what you want, especially if you have more than two fields! For example, here is a snippet
of a valid input JSON file, though note that your texts can be much longer than these, and are not constrained
(despite the field name) to being single grammatical sentences:
```
{"sentence1": "COVID-19 vaccine updates: How is the rollout proceeding?", "label": "news"}
{"sentence1": "Manchester United celebrates Europa League success", "label": "sports"}
```
### Usage notes
If your inputs are long (more than ~60-70 words), you may wish to increase the `--max_seq_length` argument
beyond the default value of 128. The maximum supported value for most models is 512 (about 200-300 words),
and some can handle even longer. This will come at a cost in runtime and memory use, however.
## Run generic text classification script in TensorFlow
We assume that your labels represent *categories*, even if they are integers, since text classification
is a much more common task than text regression. If your labels are floats, however, the script will assume
you want to do regression. This is something you can edit yourself if your use-case requires it!
The script [run_tf_text_classification.py](https://github.com/huggingface/transformers/blob/master/examples/tensorflow/text-classification/run_tf_text_classification.py) allows users to run a text classification on their own CSV files. For now there are few restrictions, the CSV files must have a header corresponding to the column names and not more than three columns: one column for the id, one column for the text and another column for a second piece of text in case of an entailment classification for example.
After training, the model will be saved to `--output_dir`. Once your model is trained, you can get predictions
by calling the script without a `--train_file` or `--validation_file`; simply pass it the output_dir containing
the trained model and a `--test_file` and it will write its predictions to a text file for you.
To use the script, one as to run the following command line:
```bash
python run_tf_text_classification.py \
--train_file train.csv \ ### training dataset file location (mandatory if running with --do_train option)
--dev_file dev.csv \ ### development dataset file location (mandatory if running with --do_eval option)
--test_file test.csv \ ### test dataset file location (mandatory if running with --do_predict option)
--label_column_id 0 \ ### which column corresponds to the labels
--model_name_or_path bert-base-multilingual-uncased \
--output_dir model \
--num_train_epochs 4 \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 32 \
--do_train \
--do_eval \
--do_predict \
--logging_steps 10 \
--evaluation_strategy steps \
--save_steps 10 \
--overwrite_output_dir \
--max_seq_length 128
### Example command
```
python run_text_classification.py \
--model_name_or_path distilbert-base-cased \
--train_file training_data.json \
--validation_file validation_data.json \
--output_dir output/ \
--test_file data_to_predict.json
```
accelerate
datasets >= 1.1.3
sentencepiece != 0.1.92
protobuf
tensorflow >= 2.3
tensorflow >= 2.3
\ No newline at end of file
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for sequence classification."""
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from math import ceil
from pathlib import Path
from typing import Optional
import numpy as np
from datasets import load_dataset
from transformers import (
AutoConfig,
AutoTokenizer,
HfArgumentParser,
PretrainedConfig,
TFAutoModelForSequenceClassification,
TrainingArguments,
set_seed,
)
from transformers.file_utils import CONFIG_NAME, TF2_WEIGHTS_NAME
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" # Reduce the amount of console output from TF
import tensorflow as tf # noqa: E402
logger = logging.getLogger(__name__)
# region Helper classes
class DataSequence(tf.keras.utils.Sequence):
# We use a Sequence object to load the data. Although it's completely possible to load your data as Numpy/TF arrays
# and pass those straight to the Model, this constrains you in a couple of ways. Most notably, it requires all
# the data to be padded to the length of the longest input example, and it also requires the whole dataset to be
# loaded into memory. If these aren't major problems for you, you can skip the sequence object in your own code!
def __init__(self, dataset, non_label_column_names, batch_size, labels, shuffle=True):
super().__init__()
# Retain all of the columns not present in the original data - these are the ones added by the tokenizer
self.data = {
key: dataset[key]
for key in dataset.features.keys()
if key not in non_label_column_names and key != "label"
}
data_lengths = {len(array) for array in self.data.values()}
assert len(data_lengths) == 1, "Dataset arrays differ in length!"
self.data_length = data_lengths.pop()
self.num_batches = ceil(self.data_length / batch_size)
if labels:
self.labels = np.array(dataset["label"])
assert len(self.labels) == self.data_length, "Labels not the same length as input arrays!"
else:
self.labels = None
self.batch_size = batch_size
self.shuffle = shuffle
if self.shuffle:
# Shuffle the data order
self.permutation = np.random.permutation(self.data_length)
else:
self.permutation = None
def on_epoch_end(self):
# If we're shuffling, reshuffle the data order after each epoch
if self.shuffle:
self.permutation = np.random.permutation(self.data_length)
def __getitem__(self, item):
# Note that this yields a batch, not a single sample
batch_start = item * self.batch_size
batch_end = (item + 1) * self.batch_size
if self.shuffle:
data_indices = self.permutation[batch_start:batch_end]
else:
data_indices = np.arange(batch_start, batch_end)
# We want to pad the data as little as possible, so we only pad each batch
# to the maximum length within that batch. We do that by stacking the variable-
# length inputs into a ragged tensor and then densifying it.
batch_input = {
key: tf.ragged.constant([data[i] for i in data_indices]).to_tensor() for key, data in self.data.items()
}
if self.labels is None:
return batch_input
else:
batch_labels = self.labels[data_indices]
return batch_input, batch_labels
def __len__(self):
return self.num_batches
class SavePretrainedCallback(tf.keras.callbacks.Callback):
# Hugging Face models have a save_pretrained() method that saves both the weights and the necessary
# metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback
# that saves the model with this method after each epoch.
def __init__(self, output_dir, **kwargs):
super().__init__()
self.output_dir = output_dir
def on_epoch_end(self, epoch, logs=None):
self.model.save_pretrained(self.output_dir)
# endregion
# region Command-line arguments
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_val_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
},
)
max_test_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of test examples to this "
"value if set."
},
)
def __post_init__(self):
train_extension = self.train_file.split(".")[-1].lower() if self.train_file is not None else None
validation_extension = (
self.validation_file.split(".")[-1].lower() if self.validation_file is not None else None
)
test_extension = self.test_file.split(".")[-1].lower() if self.test_file is not None else None
extensions = {train_extension, validation_extension, test_extension}
extensions.discard(None)
assert len(extensions) != 0, "Need to supply at least one of --train_file, --validation_file or --test_file!"
assert len(extensions) == 1, "All input files should have the same file extension, either csv or json!"
assert "csv" in extensions or "json" in extensions, "Input files should have either .csv or .json extensions!"
self.input_file_extension = extensions.pop()
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
# endregion
def main():
# region Argument parsing
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
output_dir = Path(training_args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# endregion
# region Checkpoints
# Detecting last checkpoint.
checkpoint = None
if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir:
if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file():
checkpoint = output_dir
logger.info(
f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
" behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
else:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to continue regardless."
)
# endregion
# region Logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO)
logger.info(f"Training/evaluation parameters {training_args}")
# endregion
# region Loading data
# For CSV/JSON files, this script will use the 'label' field as the label and the 'sentence1' and optionally
# 'sentence2' fields as inputs if they exist. If not, the first two fields not named label are used if at least two
# columns are provided. Note that the term 'sentence' can be slightly misleading, as they often contain more than
# a single grammatical sentence, when the task requires it.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
data_files = {"train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file}
data_files = {key: file for key, file in data_files.items() if file is not None}
for key in data_files.keys():
logger.info(f"Loading a local file for {key}: {data_files[key]}")
if data_args.input_file_extension == "csv":
# Loading a dataset from local csv files
datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir)
else:
# Loading a dataset from local json files
datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# endregion
# region Label preprocessing
# If you've passed us a training set, we try to infer your labels from it
if "train" in datasets:
# By default we assume that if your label column looks like a float then you're doing regression,
# and if not then you're doing classification. This is something you may want to change!
is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = datasets["train"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
# If you haven't passed a training set, we read label info from the saved model (this happens later)
else:
num_labels = None
label_list = None
is_regression = None
# endregion
# region Load pretrained model and tokenizer
# Set seed before initializing model
set_seed(training_args.seed)
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if checkpoint is not None:
config_path = training_args.output_dir
elif model_args.config_name:
config_path = model_args.config_name
else:
config_path = model_args.model_name_or_path
if num_labels is not None:
config = AutoConfig.from_pretrained(
config_path,
num_labels=num_labels,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
config = AutoConfig.from_pretrained(
config_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
if checkpoint is None:
model_path = model_args.model_name_or_path
else:
model_path = checkpoint
model = TFAutoModelForSequenceClassification.from_pretrained(
model_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# endregion
# region Optimizer, loss and compilation
optimizer = tf.keras.optimizers.Adam(
learning_rate=training_args.learning_rate,
beta_1=training_args.adam_beta1,
beta_2=training_args.adam_beta2,
epsilon=training_args.adam_epsilon,
clipnorm=training_args.max_grad_norm,
)
if is_regression:
loss = tf.keras.losses.MeanSquaredError()
metrics = []
else:
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metrics = ["accuracy"]
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
# endregion
# region Dataset preprocessing
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
column_names = {col for cols in datasets.column_names.values() for col in cols}
non_label_column_names = [name for name in column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
elif "sentence1" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", None
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
# Ensure that our labels match the model's, if it has some pre-specified
if "train" in datasets:
if not is_regression and model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
label_name_to_id = model.config.label2id
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
label_to_id = label_name_to_id # Use the model's labels
else:
logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
label_to_id = {v: i for i, v in enumerate(label_list)}
elif not is_regression:
label_to_id = {v: i for i, v in enumerate(label_list)}
else:
label_to_id = None
# Now we've established our label2id, let's overwrite the model config with it.
model.config.label2id = label_to_id
if model.config.label2id is not None:
model.config.id2label = {id: label for label, id in label_to_id.items()}
else:
model.config.id2label = None
else:
label_to_id = model.config.label2id # Just load the data from the model
if "validation" in datasets and model.config.label2id is not None:
validation_label_list = datasets["validation"].unique("label")
for val_label in validation_label_list:
assert val_label in label_to_id, f"Label {val_label} is in the validation set but not the training set!"
def preprocess_function(examples):
# Tokenize the texts
args = (
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
# Map labels to IDs
if model.config.label2id is not None and "label" in examples:
result["label"] = [(model.config.label2id[l] if l != -1 else -1) for l in examples["label"]]
return result
datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache)
if "train" in datasets:
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
# Log a few random samples from the training set so we can see that it's working as expected:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
if "validation" in datasets:
eval_dataset = datasets["validation"]
if data_args.max_val_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
if "test" in datasets:
test_dataset = datasets["test"]
if data_args.max_test_samples is not None:
test_dataset = test_dataset.select(range(data_args.max_test_samples))
# endregion
# region Training
if "train" in datasets:
training_dataset = DataSequence(
train_dataset, non_label_column_names, batch_size=training_args.per_device_train_batch_size, labels=True
)
if "validation" in datasets:
eval_dataset = DataSequence(
eval_dataset, non_label_column_names, batch_size=training_args.per_device_eval_batch_size, labels=True
)
else:
eval_dataset = None
callbacks = [SavePretrainedCallback(output_dir=training_args.output_dir)]
model.fit(
training_dataset, validation_data=eval_dataset, epochs=training_args.num_train_epochs, callbacks=callbacks
)
elif "validation" in datasets:
# If there's a validation dataset but no training set, just evaluate the metrics
eval_dataset = DataSequence(
eval_dataset, non_label_column_names, batch_size=training_args.per_device_eval_batch_size, labels=True
)
logger.info("Computing metrics on validation data...")
if is_regression:
loss = model.evaluate(eval_dataset)
logger.info(f"Loss: {loss:.5f}")
else:
loss, accuracy = model.evaluate(eval_dataset)
logger.info(f"Loss: {loss:.5f}, Accuracy: {accuracy * 100:.4f}%")
# endregion
# region Prediction
if "test" in datasets:
logger.info("Doing predictions on test dataset...")
test_dataset = DataSequence(
test_dataset, non_label_column_names, batch_size=training_args.per_device_eval_batch_size, labels=False
)
predictions = model.predict(test_dataset)["logits"]
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
output_test_file = os.path.join(training_args.output_dir, "test_results.txt")
with open(output_test_file, "w") as writer:
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
if is_regression:
writer.write(f"{index}\t{item:3.3f}\n")
else:
item = model.config.id2label[item]
writer.write(f"{index}\t{item}\n")
logger.info(f"Wrote predictions to {output_test_file}!")
# endregion
if __name__ == "__main__":
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment