Unverified Commit ac227093 authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Add ViLT (#14895)



* First commit

* Add conversion script

* Make conversion script work for base model

* More improvements

* Update conversion script, works for vqa

* Add indexing argument to meshgrid

* Make conversion script work for ViltForPreTraining

* Add ViltForPreTraining to docs

* Fix device issue

* Add processor

* Add MinMaxResize to feature extractor

* Implement call method of ViltProcessor

* Fix tests

* Add integration test

* Add loss calculation for VQA

* Improve tests

* Improve some more tests

* Debug tests

* Small improvements

* Add support for attention_mask

* Remove mask_it

* Add pixel_mask

* Add tests for ViltFeatureExtractor

* Improve tests

* Add ViltForNaturalLanguageVisualReasoning

* Add ViltForNaturalLanguageVisualReasoning to conversion script

* Minor fixes

* Add support for image_embeds, update docstrings to markdown

* Update docs to markdown

* Improve conversion script

* Rename ViltForPreTraining to ViltForMaskedLM

* Improve conversion script

* Convert docstrings to markdown

* Fix code example of retrieval model

* Properly convert masked language model

* Add integration test for nlvr

* Fix code quality

* Apply suggestions from code review

* Add copied from statements

* Fix pretrained_config_archive_map

* Fix docs

* Add model to README

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply more suggestions from code review

* Make code more readable

* Add ViltForNaturalLanguageVisualReasoning to the tests

* Rename ViltForVisualQuestionAnswering to ViltForQuestionAnswering

* Replace pixel_values_2 by single tensor

* Add hidden_states and attentions

* Fix one more test

* Fix all tests

* Update year

* Fix rebase issues

* Fix another rebase issue

* Remove ViltForPreTraining from auto mapping

* Rename ViltForImageRetrievalTextRetrieval to ViltForImageAndTextRetrieval

* Make it possible to use BertTokenizerFast in the processor

* Use BertTokenizerFast by default

* Rename ViltForNaturalLanguageVisualReasoning, define custom model output
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 691878ee
......@@ -87,6 +87,20 @@ class SegformerFeatureExtractor(metaclass=DummyObject):
requires_backends(self, ["vision"])
class ViltFeatureExtractor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class ViltProcessor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class ViTFeatureExtractor(metaclass=DummyObject):
_backends = ["vision"]
......
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViltFeatureExtractor
class ViltFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=30,
size_divisor=2,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.size_divisor = size_divisor
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
def prepare_feat_extract_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to ViltFeatureExtractor,
assuming do_resize is set to True with a scalar size and size_divisor.
"""
if not batched:
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
scale = self.size / min(w, h)
if h < w:
newh, neww = self.size, scale * w
else:
newh, neww = scale * h, self.size
max_size = int((1333 / 800) * self.size)
if max(newh, neww) > max_size:
scale = max_size / max(newh, neww)
newh = newh * scale
neww = neww * scale
newh, neww = int(newh + 0.5), int(neww + 0.5)
expected_height, expected_width = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class ViltFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = ViltFeatureExtractor if is_vision_available() else None
def setUp(self):
self.feature_extract_tester = ViltFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_feat_extract_properties(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(feature_extractor, "image_mean"))
self.assertTrue(hasattr(feature_extractor, "image_std"))
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
self.assertTrue(hasattr(feature_extractor, "do_resize"))
self.assertTrue(hasattr(feature_extractor, "size"))
self.assertTrue(hasattr(feature_extractor, "size_divisor"))
def test_batch_feature(self):
pass
def test_call_pil(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)
self.assertEqual(
encoded_images.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
def test_call_numpy(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random numpy tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)
self.assertEqual(
encoded_images.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
def test_call_pytorch(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)
self.assertEqual(
encoded_images.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
def test_equivalence_pad_and_create_pixel_mask(self):
# Initialize feature_extractors
feature_extractor_1 = self.feature_extraction_class(**self.feat_extract_dict)
feature_extractor_2 = self.feature_extraction_class(do_resize=False, do_normalize=False)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test whether the method "pad_and_return_pixel_mask" and calling the feature extractor return the same tensors
encoded_images_with_method = feature_extractor_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt")
encoded_images = feature_extractor_2(image_inputs, return_tensors="pt")
self.assertTrue(
torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
)
self.assertTrue(
torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4)
)
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViLT model. """
import unittest
from datasets import load_dataset
from transformers import ViltConfig, is_torch_available, is_vision_available
from transformers.file_utils import cached_property
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltModel,
)
from transformers.models.vilt.modeling_vilt import VILT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViltProcessor
class ViltModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None,
modality_type_vocab_size=2,
add_multiple_images=False,
num_images=-1,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
self.modality_type_vocab_size = modality_type_vocab_size
self.add_multiple_images = add_multiple_images
self.num_images = num_images
# we set the expected sequence length (which is used in several tests)
# this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token
self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
if self.add_multiple_images:
pixel_values = floats_tensor([self.batch_size, 2, self.num_channels, self.image_size, self.image_size])
else:
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
config = self.get_config()
return (config, input_ids, token_type_ids, input_mask, pixel_values, token_labels)
def get_config(self):
return ViltConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
num_labels=self.num_labels,
modality_type_vocab_size=self.modality_type_vocab_size,
num_images=self.num_images,
)
def create_and_check_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
pixel_values,
token_labels,
):
model = ViltModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values)
result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values)
result = model(input_ids, pixel_values=pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
pixel_values,
token_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
"pixel_values": pixel_values,
}
return config, inputs_dict
def prepare_pixel_values(self):
return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@require_torch
class ViltModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
ViltModel,
ViltForQuestionAnswering,
ViltForImageAndTextRetrieval,
ViltForMaskedLM,
)
if is_torch_available()
else ()
)
test_pruning = False
test_headmasking = False
test_torchscript = False
# ViltForMaskedLM, ViltForQuestionAnswering and ViltForImagesAndTextClassification require special treatment
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
# if model_class.__name__ == "ViltForNaturalLanguageVisualReasonining":
# inputs_dict["pixel_values"] = floats_tensor([self.model_tester.batch_size, self.model_tester.num_images, self.model_tester.num_channels, self.model_tester.image_size, self.model_tester.image_size])
if return_labels:
if model_class.__name__ == "ViltForQuestionAnswering":
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, self.model_tester.num_labels, device=torch_device
)
elif model_class.__name__ == "ViltForMaskedLM":
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
elif model_class.__name__ == "ViltForImagesAndTextClassification":
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = ViltModelTester(self)
self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
if model_class.__name__ == "ViltForImagesAndTextClassification":
config.modality_type_vocab_size = 3
# ViltForImageAndTextRetrieval doesn't support training for now
if model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval]:
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
for k, v in inputs.items():
print(k, v.shape)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
# ViltForImageAndTextRetrieval doesn't support training for now
if (
model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval]
or not model_class.supports_gradient_checkpointing
):
continue
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable()
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
@unittest.skip(
reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic
hidden states"""
)
def test_save_load(self):
pass
@unittest.skip(
reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic
hidden states"""
)
def test_determinism(self):
pass
@unittest.skip(
reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic
hidden states"""
)
def test_model_outputs_equivalence(self):
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "expected_seq_len", None)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
if model_class.__name__ == "ViltForImagesAndTextClassification":
# attentions are a list of length num_images
# each element contains the attentions of a particular image index
self.assertEqual(len(attentions), self.model_tester.num_images)
self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers)
else:
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
if model_class.__name__ == "ViltForImagesAndTextClassification":
# attentions are a list of length num_images
# each element contains the attentions of a particular image index
self.assertEqual(len(attentions), self.model_tester.num_images)
self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers)
else:
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if model_class.__name__ == "ViltForImagesAndTextClassification":
self.assertListEqual(
list(attentions[0][0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
if model_class.__name__ == "ViltForImagesAndTextClassification":
self.assertEqual(len(self_attentions), self.model_tester.num_images)
self.assertEqual(len(self_attentions[0]), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0][0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
else:
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
if model_class.__name__ == "ViltForImagesAndTextClassification":
# hidden_states are a list of length num_images
# each element contains the hidden states of a particular image index
self.assertEqual(len(hidden_states), self.model_tester.num_images)
self.assertEqual(len(hidden_states[0]), expected_num_layers)
else:
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.expected_seq_len
if model_class.__name__ == "ViltForImagesAndTextClassification":
self.assertListEqual(
list(hidden_states[0][0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
else:
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
print("Model class:", model_class)
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
if model_class.__name__ == "ViltForImagesAndTextClassification":
# hidden_states are a list of length num_images
# each element contains the hidden states of a particular image index
hidden_states[0].retain_grad()
attentions[0].retain_grad()
else:
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
if model_class.__name__ == "ViltForImagesAndTextClassification":
# hidden_states are a list of length num_images
# each element contains the hidden states of a particular image index
self.assertIsNotNone(hidden_states[0].grad)
self.assertIsNotNone(attentions[0].grad)
else:
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
@slow
def test_model_from_pretrained(self):
for model_name in VILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ViltModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class ViltForImagesAndTextClassificationModelTest(ViltModelTest, unittest.TestCase):
all_model_classes = (ViltForImagesAndTextClassification,) if is_torch_available() else ()
def setUp(self):
self.model_tester = ViltModelTester(self, modality_type_vocab_size=3, add_multiple_images=True, num_images=2)
self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37)
@unittest.skip("We only test the model that takes in multiple images")
def test_model(self):
pass
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class ViltModelIntegrationTest(unittest.TestCase):
@cached_property
def default_processor(self):
return ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") if is_vision_available() else None
@slow
def test_inference_masked_lm(self):
model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm").to(torch_device)
processor = self.default_processor
image = prepare_img()
text = "a bunch of [MASK] laying on a [MASK]."
inputs = processor(image, text, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size([1, 11, 30522])
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-12.5061, -12.5123, -12.5174]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4))
# verify masked token prediction equals "cats"
predicted_id = outputs.logits[0, 4, :].argmax(-1).item()
assert processor.decode([predicted_id]) == "cats"
@slow
def test_inference_visual_question_answering(self):
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa").to(torch_device)
processor = self.default_processor
image = prepare_img()
text = "How many cats are there?"
inputs = processor(image, text, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 3129))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-15.9495, -18.1472, -10.3041]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
# compute loss
vqa_labels = [[2, 3, 155, 800]]
vqa_scores = [[1.0, 0.3, 0.3, 0.3]]
labels = torch.zeros(1, model.config.num_labels).to(torch_device)
for i, (labels_example, scores_example) in enumerate(zip(vqa_labels, vqa_scores)):
for l, s in zip(labels_example, scores_example):
labels[i, l] = s
# forward pass
outputs = model(**inputs, labels=labels)
# verify we have a positive loss
self.assertTrue(outputs.loss > 0)
@slow
def test_inference_natural_language_visual_reasoning(self):
model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2").to(
torch_device
)
processor = self.default_processor
dataset = load_dataset("hf-internal-testing/fixtures_nlvr2", split="test")
image1 = Image.open(dataset[0]["file"]).convert("RGB")
image2 = Image.open(dataset[1]["file"]).convert("RGB")
text = "The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing."
encoding_1 = processor(image1, text, return_tensors="pt")
encoding_2 = processor(image2, text, return_tensors="pt")
pixel_values = torch.stack([encoding_1.pixel_values, encoding_2.pixel_values], dim=1)
# forward pass
outputs = model(
input_ids=encoding_1.input_ids,
pixel_values=pixel_values,
)
# verify the logits
expected_shape = torch.Size([1, 2])
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-2.4013, 2.9342]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
......@@ -108,6 +108,10 @@ TEST_FILES_WITH_NO_COMMON_TESTS = [
# should **not** be the rule.
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
# models to ignore for model xxx mapping
"ViltForQuestionAnswering",
"ViltForImagesAndTextClassification",
"ViltForImageAndTextRetrieval",
"ViltForMaskedLM",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"SegformerDecodeHead",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment