Unverified Commit aacd2123 authored by Nicolas Patry's avatar Nicolas Patry Committed by GitHub
Browse files

Fixing #13381 (#13400)

* Fixing #13381

* Enabling automatic LED models.
parent db514a75
...@@ -88,7 +88,7 @@ class ZeroShotClassificationPipeline(Pipeline): ...@@ -88,7 +88,7 @@ class ZeroShotClassificationPipeline(Pipeline):
hypothesis_template, hypothesis_template,
padding=True, padding=True,
add_special_tokens=True, add_special_tokens=True,
truncation=TruncationStrategy.DO_NOT_TRUNCATE, truncation=TruncationStrategy.ONLY_FIRST,
**kwargs **kwargs
): ):
""" """
...@@ -113,6 +113,7 @@ class ZeroShotClassificationPipeline(Pipeline): ...@@ -113,6 +113,7 @@ class ZeroShotClassificationPipeline(Pipeline):
) )
inputs.append(model_input) inputs.append(model_input)
else: else:
try:
inputs = self.tokenizer( inputs = self.tokenizer(
sequence_pairs, sequence_pairs,
add_special_tokens=add_special_tokens, add_special_tokens=add_special_tokens,
...@@ -120,6 +121,23 @@ class ZeroShotClassificationPipeline(Pipeline): ...@@ -120,6 +121,23 @@ class ZeroShotClassificationPipeline(Pipeline):
padding=padding, padding=padding,
truncation=truncation, truncation=truncation,
) )
except Exception as e:
if "too short" in str(e):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
inputs = self.tokenizer(
sequence_pairs,
add_special_tokens=add_special_tokens,
return_tensors=return_tensors,
padding=padding,
truncation=TruncationStrategy.DO_NOT_TRUNCATE,
)
else:
raise e
return inputs return inputs
......
...@@ -105,6 +105,20 @@ class ZeroShotClassificationPipelineTests(unittest.TestCase, metaclass=PipelineT ...@@ -105,6 +105,20 @@ class ZeroShotClassificationPipelineTests(unittest.TestCase, metaclass=PipelineT
zero_shot_classifier.model.config.label2id = original_label2id zero_shot_classifier.model.config.label2id = original_label2id
self.assertEqual(original_entailment, zero_shot_classifier.entailment_id) self.assertEqual(original_entailment, zero_shot_classifier.entailment_id)
@require_torch
def test_truncation(self):
zero_shot_classifier = pipeline(
"zero-shot-classification",
model="sshleifer/tiny-distilbert-base-cased-distilled-squad",
framework="pt",
)
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]
)
@require_torch @require_torch
def test_small_model_pt(self): def test_small_model_pt(self):
zero_shot_classifier = pipeline( zero_shot_classifier = pipeline(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment