Unverified Commit a6b77598 authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

Add Image Processors (#19796)



* Add CLIP image processor

* Crop size as dict too

* Update warning

* Actually use logger this time

* Normalize doesn't change dtype of input

* Add perceiver image processor

* Tidy up

* Add DPT image processor

* Add Vilt image processor

* Tidy up

* Add poolformer image processor

* Tidy up

* Add LayoutLM v2 and v3 imsge processors

* Tidy up

* Add Flava image processor

* Tidy up

* Add deit image processor

* Tidy up

* Add ConvNext image processor

* Tidy up

* Add levit image processor

* Add segformer image processor

* Add in post processing

* Fix up

* Add ImageGPT image processor

* Fixup

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Add VideoMAE image processor

* Tidy up

* Add ImageGPT image processor

* Fixup

* Add ViT image processor

* Tidy up

* Add beit image processor

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Fix up

* Fix flava and remove tree module

* Fix image classification pipeline failing tests

* Update feature extractor in trainer scripts

* Update pad_if_smaller to accept tuple and int size

* Update for image segmentation pipeline

* Update src/transformers/models/perceiver/image_processing_perceiver.py
Co-authored-by: default avatarAlara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/image_processing_utils.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/beit/image_processing_beit.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* PR comments - docstrings; remove accidentally added resize; var names

* Update docstrings

* Add exception if size is not in the right format

* Fix exception check

* Fix up

* Use shortest_edge in tuple in script
Co-authored-by: default avatarAlara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
parent 2e3452af
......@@ -43,12 +43,13 @@ class SegformerFeatureExtractionTester(unittest.TestCase):
min_resolution=30,
max_resolution=400,
do_resize=True,
size=30,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
reduce_labels=False,
do_reduce_labels=False,
):
size = size if size is not None else {"height": 30, "width": 30}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
......@@ -59,7 +60,7 @@ class SegformerFeatureExtractionTester(unittest.TestCase):
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.reduce_labels = reduce_labels
self.do_reduce_labels = do_reduce_labels
def prepare_feat_extract_dict(self):
return {
......@@ -68,7 +69,7 @@ class SegformerFeatureExtractionTester(unittest.TestCase):
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"reduce_labels": self.reduce_labels,
"do_reduce_labels": self.do_reduce_labels,
}
......@@ -112,7 +113,7 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
self.assertTrue(hasattr(feature_extractor, "image_mean"))
self.assertTrue(hasattr(feature_extractor, "image_std"))
self.assertTrue(hasattr(feature_extractor, "reduce_labels"))
self.assertTrue(hasattr(feature_extractor, "do_reduce_labels"))
def test_batch_feature(self):
pass
......@@ -132,8 +133,8 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -144,8 +145,8 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -164,8 +165,8 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -176,8 +177,8 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -196,8 +197,8 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -208,8 +209,8 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -230,16 +231,16 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
1,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
......@@ -253,16 +254,16 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
......@@ -278,16 +279,16 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
1,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
......@@ -303,16 +304,16 @@ class SegformerFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.
(
2,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
2,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
......
......@@ -44,11 +44,15 @@ class VideoMAEFeatureExtractionTester(unittest.TestCase):
min_resolution=30,
max_resolution=400,
do_resize=True,
size=18,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
crop_size=None,
):
size = size if size is not None else {"shortest_edge": 18}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
......@@ -61,6 +65,7 @@ class VideoMAEFeatureExtractionTester(unittest.TestCase):
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.crop_size = crop_size
def prepare_feat_extract_dict(self):
return {
......@@ -69,6 +74,7 @@ class VideoMAEFeatureExtractionTester(unittest.TestCase):
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
......@@ -91,6 +97,7 @@ class VideoMAEFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.T
self.assertTrue(hasattr(feature_extractor, "image_std"))
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
self.assertTrue(hasattr(feature_extractor, "do_resize"))
self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
self.assertTrue(hasattr(feature_extractor, "size"))
def test_batch_feature(self):
......@@ -113,8 +120,8 @@ class VideoMAEFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.T
1,
self.feature_extract_tester.num_frames,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.crop_size["height"],
self.feature_extract_tester.crop_size["width"],
),
)
......@@ -126,8 +133,8 @@ class VideoMAEFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.T
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_frames,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.crop_size["height"],
self.feature_extract_tester.crop_size["width"],
),
)
......@@ -148,8 +155,8 @@ class VideoMAEFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.T
1,
self.feature_extract_tester.num_frames,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.crop_size["height"],
self.feature_extract_tester.crop_size["width"],
),
)
......@@ -161,8 +168,8 @@ class VideoMAEFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.T
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_frames,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.crop_size["height"],
self.feature_extract_tester.crop_size["width"],
),
)
......@@ -183,8 +190,8 @@ class VideoMAEFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.T
1,
self.feature_extract_tester.num_frames,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.crop_size["height"],
self.feature_extract_tester.crop_size["width"],
),
)
......@@ -196,7 +203,7 @@ class VideoMAEFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.T
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_frames,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.crop_size["height"],
self.feature_extract_tester.crop_size["width"],
),
)
......@@ -43,12 +43,13 @@ class ViltFeatureExtractionTester(unittest.TestCase):
min_resolution=30,
max_resolution=400,
do_resize=True,
size=30,
size=None,
size_divisor=2,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
):
size = size if size is not None else {"shortest_edge": 30}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
......@@ -78,18 +79,19 @@ class ViltFeatureExtractionTester(unittest.TestCase):
assuming do_resize is set to True with a scalar size and size_divisor.
"""
if not batched:
size = self.size["shortest_edge"]
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
scale = self.size / min(w, h)
scale = size / min(w, h)
if h < w:
newh, neww = self.size, scale * w
newh, neww = size, scale * w
else:
newh, neww = scale * h, self.size
newh, neww = scale * h, size
max_size = int((1333 / 800) * self.size)
max_size = int((1333 / 800) * size)
if max(newh, neww) > max_size:
scale = max_size / max(newh, neww)
newh = newh * scale
......@@ -233,7 +235,7 @@ class ViltFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestC
def test_equivalence_pad_and_create_pixel_mask(self):
# Initialize feature_extractors
feature_extractor_1 = self.feature_extraction_class(**self.feat_extract_dict)
feature_extractor_2 = self.feature_extraction_class(do_resize=False, do_normalize=False)
feature_extractor_2 = self.feature_extraction_class(do_resize=False, do_normalize=False, do_rescale=False)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
......
......@@ -43,11 +43,12 @@ class ViTFeatureExtractionTester(unittest.TestCase):
min_resolution=30,
max_resolution=400,
do_resize=True,
size=18,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
):
size = size if size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
......@@ -109,8 +110,8 @@ class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCa
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -121,8 +122,8 @@ class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCa
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -141,8 +142,8 @@ class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCa
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -153,8 +154,8 @@ class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCa
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -173,8 +174,8 @@ class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCa
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
......@@ -185,7 +186,7 @@ class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCa
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.size,
self.feature_extract_tester.size,
self.feature_extract_tester.size["height"],
self.feature_extract_tester.size["width"],
),
)
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.image_processing_utils import get_size_dict
class ImageProcessingUtilsTester(unittest.TestCase):
def test_get_size_dict(self):
# Test a dict with the wrong keys raises an error
inputs = {"wrong_key": 224}
with self.assertRaises(ValueError):
get_size_dict(inputs)
inputs = {"height": 224}
with self.assertRaises(ValueError):
get_size_dict(inputs)
inputs = {"width": 224, "shortest_edge": 224}
with self.assertRaises(ValueError):
get_size_dict(inputs)
# Test a dict with the correct keys is returned as is
inputs = {"height": 224, "width": 224}
outputs = get_size_dict(inputs)
self.assertEqual(outputs, inputs)
inputs = {"shortest_edge": 224}
outputs = get_size_dict(inputs)
self.assertEqual(outputs, {"shortest_edge": 224})
inputs = {"longest_edge": 224, "shortest_edge": 224}
outputs = get_size_dict(inputs)
self.assertEqual(outputs, {"longest_edge": 224, "shortest_edge": 224})
# Test a single int value which represents (size, size)
outputs = get_size_dict(224)
self.assertEqual(outputs, {"height": 224, "width": 224})
# Test a single int value which represents the shortest edge
outputs = get_size_dict(224, default_to_square=False)
self.assertEqual(outputs, {"shortest_edge": 224})
# Test a tuple of ints which represents (height, width)
outputs = get_size_dict((150, 200))
self.assertEqual(outputs, {"height": 150, "width": 200})
# Test a tuple of ints which represents (width, height)
outputs = get_size_dict((150, 200), height_width_order=False)
self.assertEqual(outputs, {"height": 200, "width": 150})
# Test an int representing the shortest edge and max_size which represents the longest edge
outputs = get_size_dict(224, max_size=256, default_to_square=False)
self.assertEqual(outputs, {"shortest_edge": 224, "longest_edge": 256})
# Test int with default_to_square=True and max_size fails
with self.assertRaises(ValueError):
get_size_dict(224, max_size=256, default_to_square=True)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment