Unverified Commit a59e7c1e authored by Shang Zhang's avatar Shang Zhang Committed by GitHub
Browse files

Add QDQBert model and quantization examples of SQUAD task (#14066)



* clean up branch for add-qdqbert-model

* README update for QAT example; update docstrings in modeling_qdqbert.py

* Update qdqbert.rst

* Update README.md

* Update README.md

* calibration data using traning set; QAT example runs in fp32

* re-use BERTtokenizer for qdqbert

* Update docs/source/model_doc/qdqbert.rst
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/qdqbert.rst
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/qdqbert.rst
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove qdqbert tokenizer

* Update qdqbert.rst

* update evaluate-hf-trt-qa.py

* update configuration_qdqbert.py

* update modeling_qdqbert.py: add copied statement; replace assert with ValueError

* update copied from statement

* add is_quantization_available; run make fix-copies

* unittest add require_quantization

* add backend dependency to qdqbert model

* update README; update evaluate script; make style

* lint

* docs qdqbert update

* circleci build_doc add pytorch-quantization for qdqbert

* update README

* update example readme with instructions to upgrade TensorRT to 8.2

* Update src/transformers/models/qdqbert/configuration_qdqbert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/qdqbert/configuration_qdqbert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/qdqbert/configuration_qdqbert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/qdqbert/configuration_qdqbert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* change quantization to pytorch_quantization for backend requirement

* feed_forward_chunking not supported in QDQBert

* make style

* update model docstrings and comments in testing scripts

* rename example to quantization-qdqbert; rename example scripts from qat to quant

* Update src/transformers/models/qdqbert/modeling_qdqbert.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* rm experimental functions in quant_trainer

* qa cleanup

* make fix-copies for docs index.rst

* fix doctree; use post_init() for qdqbert

* fix early device assignment for qdqbert

* fix CI:Model templates runner
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 81fe8afa
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
_import_structure = {
"configuration_qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"],
}
if is_torch_available():
_import_structure["modeling_qdqbert"] = [
"QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"QDQBertForMaskedLM",
"QDQBertForMultipleChoice",
"QDQBertForNextSentencePrediction",
"QDQBertForQuestionAnswering",
"QDQBertForSequenceClassification",
"QDQBertForTokenClassification",
"QDQBertLayer",
"QDQBertLMHeadModel",
"QDQBertModel",
"QDQBertPreTrainedModel",
"load_tf_weights_in_qdqbert",
]
if TYPE_CHECKING:
from .configuration_qdqbert import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, QDQBertConfig
if is_torch_available():
from .modeling_qdqbert import (
QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
QDQBertForMaskedLM,
QDQBertForMultipleChoice,
QDQBertForNextSentencePrediction,
QDQBertForQuestionAnswering,
QDQBertForSequenceClassification,
QDQBertForTokenClassification,
QDQBertLayer,
QDQBertLMHeadModel,
QDQBertModel,
QDQBertPreTrainedModel,
load_tf_weights_in_qdqbert,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
# coding=utf-8
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" QDQBERT model configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
# QDQBERT models can be loaded from any BERT checkpoint, available at https://huggingface.co/models?filter=bert
}
class QDQBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.QDQBertModel`. It is used to
instantiate an QDQBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the BERT `bert-base-uncased
<https://huggingface.co/bert-base-uncased>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the QDQBERT model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.QDQBertModel`.
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.QDQBertModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if ``config.is_decoder=True``.
Examples::
>>> from transformers import QDQBertModel, QDQBertConfig
>>> # Initializing a QDQBERT bert-base-uncased style configuration
>>> configuration = QDQBertConfig()
>>> # Initializing a model from the bert-base-uncased style configuration
>>> model = QDQBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "qdqbert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_cache=True,
is_encoder_decoder=False,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
This diff is collapsed.
......@@ -39,6 +39,7 @@ from .file_utils import (
is_onnx_available,
is_pandas_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_scatter_available,
is_sentencepiece_available,
......@@ -371,6 +372,17 @@ def require_scatter(test_case):
return test_case
def require_pytorch_quantization(test_case):
"""
Decorator marking a test that requires PyTorch Quantization Toolkit. These tests are skipped when PyTorch
Quantization Toolkit isn't installed.
"""
if not is_pytorch_quantization_available():
return unittest.skip("test requires PyTorch Quantization Toolkit")(test_case)
else:
return test_case
def require_vision(test_case):
"""
Decorator marking a test that requires the vision dependencies. These tests are skipped when torchaudio isn't
......
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..file_utils import requires_backends
QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class QDQBertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["pytorch_quantization", "torch"])
class QDQBertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["pytorch_quantization", "torch"])
class QDQBertForNextSentencePrediction:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
class QDQBertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["pytorch_quantization", "torch"])
class QDQBertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["pytorch_quantization", "torch"])
class QDQBertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["pytorch_quantization", "torch"])
class QDQBertLayer:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
class QDQBertLMHeadModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["pytorch_quantization", "torch"])
class QDQBertModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["pytorch_quantization", "torch"])
class QDQBertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["pytorch_quantization", "torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["pytorch_quantization", "torch"])
def load_tf_weights_in_qdqbert(*args, **kwargs):
requires_backends(load_tf_weights_in_qdqbert, ["pytorch_quantization", "torch"])
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment