Unverified Commit a5737779 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Update repo to isort v5 (#6686)

* Run new isort

* More changes

* Update CI, CONTRIBUTING and benchmarks
parent d329c9b0
...@@ -235,8 +235,7 @@ jobs: ...@@ -235,8 +235,7 @@ jobs:
- v0.3-code_quality-{{ checksum "setup.py" }} - v0.3-code_quality-{{ checksum "setup.py" }}
- v0.3-{{ checksum "setup.py" }} - v0.3-{{ checksum "setup.py" }}
- run: pip install --upgrade pip - run: pip install --upgrade pip
# we need a version of isort with https://github.com/timothycrosley/isort/pull/1000 - run: pip install isort
- run: pip install git+git://github.com/timothycrosley/isort.git@e63ae06ec7d70b06df9e528357650281a3d3ec22#egg=isort
- run: pip install .[tf,torch,quality] - run: pip install .[tf,torch,quality]
- save_cache: - save_cache:
key: v0.3-code_quality-{{ checksum "setup.py" }} key: v0.3-code_quality-{{ checksum "setup.py" }}
......
...@@ -134,12 +134,6 @@ Follow these steps to start contributing: ...@@ -134,12 +134,6 @@ Follow these steps to start contributing:
it with `pip uninstall transformers` before reinstalling it in editable it with `pip uninstall transformers` before reinstalling it in editable
mode with the `-e` flag.) mode with the `-e` flag.)
Right now, we need an unreleased version of `isort` to avoid a
[bug](https://github.com/timothycrosley/isort/pull/1000):
```bash
$ pip install -U git+git://github.com/timothycrosley/isort.git@e63ae06ec7d70b06df9e528357650281a3d3ec22#egg=isort
```
5. Develop the features on your branch. 5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite As you work on the features, you should make sure that the test suite
......
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
quality: quality:
black --check --line-length 119 --target-version py35 examples templates tests src utils black --check --line-length 119 --target-version py35 examples templates tests src utils
isort --check-only --recursive examples templates tests src utils isort --check-only examples templates tests src utils
flake8 examples templates tests src utils flake8 examples templates tests src utils
python utils/check_repo.py python utils/check_repo.py
...@@ -12,7 +12,7 @@ quality: ...@@ -12,7 +12,7 @@ quality:
style: style:
black --line-length 119 --target-version py35 examples templates tests src utils black --line-length 119 --target-version py35 examples templates tests src utils
isort --recursive examples templates tests src utils isort examples templates tests src utils
# Run tests for the library # Run tests for the library
......
...@@ -20,8 +20,8 @@ from dataclasses import dataclass ...@@ -20,8 +20,8 @@ from dataclasses import dataclass
from typing import List, Optional, Union from typing import List, Optional, Union
import tqdm import tqdm
from filelock import FileLock
from filelock import FileLock
from transformers import ( from transformers import (
BartTokenizer, BartTokenizer,
BartTokenizerFast, BartTokenizerFast,
......
...@@ -26,8 +26,8 @@ from enum import Enum ...@@ -26,8 +26,8 @@ from enum import Enum
from typing import List, Optional from typing import List, Optional
import tqdm import tqdm
from filelock import FileLock
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
......
...@@ -44,9 +44,10 @@ def evaluate(args): ...@@ -44,9 +44,10 @@ def evaluate(args):
reference_summaries = [] reference_summaries = []
generated_summaries = [] generated_summaries = []
import rouge
import nltk import nltk
import rouge
nltk.download("punkt") nltk.download("punkt")
rouge_evaluator = rouge.Rouge( rouge_evaluator = rouge.Rouge(
metrics=["rouge-n", "rouge-l"], metrics=["rouge-n", "rouge-l"],
......
...@@ -15,27 +15,27 @@ from transformers import BartConfig, BartForConditionalGeneration, MBartTokenize ...@@ -15,27 +15,27 @@ from transformers import BartConfig, BartForConditionalGeneration, MBartTokenize
try: try:
from .finetune import SummarizationModule, TranslationModule from .finetune import SummarizationModule, TranslationModule
from .initialization_utils import init_student, copy_layers from .finetune import main as ft_main
from .initialization_utils import copy_layers, init_student
from .utils import ( from .utils import (
use_task_specific_params,
pickle_load,
freeze_params,
assert_all_frozen,
any_requires_grad, any_requires_grad,
assert_all_frozen,
calculate_bleu_score, calculate_bleu_score,
freeze_params,
pickle_load,
use_task_specific_params,
) )
from .finetune import main as ft_main
except ImportError: except ImportError:
from finetune import SummarizationModule, TranslationModule from finetune import SummarizationModule, TranslationModule
from finetune import main as ft_main from finetune import main as ft_main
from initialization_utils import init_student, copy_layers from initialization_utils import copy_layers, init_student
from utils import ( from utils import (
use_task_specific_params,
pickle_load,
freeze_params,
assert_all_frozen,
any_requires_grad, any_requires_grad,
assert_all_frozen,
calculate_bleu_score, calculate_bleu_score,
freeze_params,
pickle_load,
use_task_specific_params,
) )
......
...@@ -17,44 +17,43 @@ from transformers import MarianTokenizer, MBartTokenizer, T5ForConditionalGenera ...@@ -17,44 +17,43 @@ from transformers import MarianTokenizer, MBartTokenizer, T5ForConditionalGenera
try: try:
from .callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from .utils import ( from .utils import (
ROUGE_KEYS,
Seq2SeqDataset,
TranslationDataset,
assert_all_frozen, assert_all_frozen,
use_task_specific_params, calculate_bleu_score,
lmap, calculate_rouge,
flatten_list, flatten_list,
pickle_save,
save_git_info,
save_json,
freeze_params, freeze_params,
calculate_rouge,
get_git_info, get_git_info,
ROUGE_KEYS,
calculate_bleu_score,
Seq2SeqDataset,
TranslationDataset,
label_smoothed_nll_loss, label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
) )
from .callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
except ImportError: except ImportError:
from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from utils import ( from utils import (
ROUGE_KEYS,
Seq2SeqDataset, Seq2SeqDataset,
TranslationDataset, TranslationDataset,
assert_all_frozen, assert_all_frozen,
use_task_specific_params, calculate_bleu_score,
lmap, calculate_rouge,
flatten_list, flatten_list,
pickle_save,
save_git_info,
save_json,
freeze_params, freeze_params,
calculate_rouge,
get_git_info, get_git_info,
ROUGE_KEYS,
calculate_bleu_score,
label_smoothed_nll_loss, label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
) )
from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
...@@ -9,9 +9,9 @@ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer ...@@ -9,9 +9,9 @@ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
try: try:
from .utils import calculate_rouge, use_task_specific_params, calculate_bleu_score, trim_batch from .utils import calculate_bleu_score, calculate_rouge, trim_batch, use_task_specific_params
except ImportError: except ImportError:
from utils import calculate_rouge, use_task_specific_params, calculate_bleu_score, trim_batch from utils import calculate_bleu_score, calculate_rouge, trim_batch, use_task_specific_params
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
......
...@@ -35,8 +35,8 @@ sys.path.extend(SRC_DIRS) ...@@ -35,8 +35,8 @@ sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None: if SRC_DIRS is not None:
import run_generation import run_generation
import run_glue import run_glue
import run_pl_glue
import run_language_modeling import run_language_modeling
import run_pl_glue
import run_squad import run_squad
......
...@@ -23,7 +23,6 @@ from enum import Enum ...@@ -23,7 +23,6 @@ from enum import Enum
from typing import List, Optional, Union from typing import List, Optional, Union
from filelock import FileLock from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
......
[isort] [isort]
default_section = FIRSTPARTY
ensure_newline_before_comments = True ensure_newline_before_comments = True
force_grid_wrap = 0 force_grid_wrap = 0
include_trailing_comma = True include_trailing_comma = True
......
...@@ -91,12 +91,7 @@ extras["all"] = extras["serving"] + ["tensorflow", "torch"] ...@@ -91,12 +91,7 @@ extras["all"] = extras["serving"] + ["tensorflow", "torch"]
extras["testing"] = ["pytest", "pytest-xdist", "timeout-decorator", "psutil"] extras["testing"] = ["pytest", "pytest-xdist", "timeout-decorator", "psutil"]
# sphinx-rtd-theme==0.5.0 introduced big changes in the style. # sphinx-rtd-theme==0.5.0 introduced big changes in the style.
extras["docs"] = ["recommonmark", "sphinx", "sphinx-markdown-tables", "sphinx-rtd-theme==0.4.3", "sphinx-copybutton"] extras["docs"] = ["recommonmark", "sphinx", "sphinx-markdown-tables", "sphinx-rtd-theme==0.4.3", "sphinx-copybutton"]
extras["quality"] = [ extras["quality"] = ["black", "isort >= 5", "flake8"]
"black",
# "isort",
"isort @ git+git://github.com/timothycrosley/isort.git@e63ae06ec7d70b06df9e528357650281a3d3ec22#egg=isort",
"flake8",
]
extras["dev"] = extras["testing"] + extras["quality"] + extras["ja"] + ["scikit-learn", "tensorflow", "torch"] extras["dev"] = extras["testing"] + extras["quality"] + extras["ja"] + ["scikit-learn", "tensorflow", "torch"]
setup( setup(
......
...@@ -189,241 +189,246 @@ if is_sklearn_available(): ...@@ -189,241 +189,246 @@ if is_sklearn_available():
# Modeling # Modeling
if is_torch_available(): if is_torch_available():
# Benchmarks
from .benchmark.benchmark import PyTorchBenchmark
from .benchmark.benchmark_args import PyTorchBenchmarkArguments
from .data.data_collator import (
DataCollator,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorWithPadding,
default_data_collator,
)
from .data.datasets import (
GlueDataset,
GlueDataTrainingArguments,
LineByLineTextDataset,
SquadDataset,
SquadDataTrainingArguments,
TextDataset,
)
from .generation_utils import top_k_top_p_filtering from .generation_utils import top_k_top_p_filtering
from .modeling_utils import PreTrainedModel, prune_layer, Conv1D, apply_chunking_to_forward from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
from .modeling_auto import ( from .modeling_auto import (
AutoModel,
AutoModelForPreTraining,
AutoModelForSequenceClassification,
AutoModelForQuestionAnswering,
AutoModelWithLMHead,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification,
AutoModelForMultipleChoice,
MODEL_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForMultipleChoice,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
) )
from .modeling_bart import (
from .modeling_mobilebert import ( BART_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertPreTrainedModel, BartForConditionalGeneration,
MobileBertModel, BartForQuestionAnswering,
MobileBertForPreTraining, BartForSequenceClassification,
MobileBertForSequenceClassification, BartModel,
MobileBertForQuestionAnswering, PretrainedBartModel,
MobileBertForMaskedLM,
MobileBertForNextSentencePrediction,
MobileBertForMultipleChoice,
MobileBertForTokenClassification,
load_tf_weights_in_mobilebert,
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertLayer,
) )
from .modeling_bert import ( from .modeling_bert import (
BertPreTrainedModel, BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertModel,
BertForPreTraining,
BertForMaskedLM, BertForMaskedLM,
BertLMHeadModel, BertForMultipleChoice,
BertForNextSentencePrediction, BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification, BertForSequenceClassification,
BertForMultipleChoice,
BertForTokenClassification, BertForTokenClassification,
BertForQuestionAnswering,
load_tf_weights_in_bert,
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertLayer, BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
) )
from .modeling_openai import ( from .modeling_camembert import (
OpenAIGPTPreTrainedModel, CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTModel, CamembertForCausalLM,
OpenAIGPTLMHeadModel, CamembertForMaskedLM,
OpenAIGPTDoubleHeadsModel, CamembertForMultipleChoice,
load_tf_weights_in_openai_gpt, CamembertForQuestionAnswering,
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, CamembertForSequenceClassification,
CamembertForTokenClassification,
CamembertModel,
) )
from .modeling_transfo_xl import ( from .modeling_ctrl import CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel
TransfoXLPreTrainedModel, from .modeling_distilbert import (
TransfoXLModel, DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TransfoXLLMHeadModel, DistilBertForMaskedLM,
AdaptiveEmbedding, DistilBertForMultipleChoice,
load_tf_weights_in_transfo_xl, DistilBertForQuestionAnswering,
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
from .modeling_dpr import (
DPRContextEncoder,
DPRPretrainedContextEncoder,
DPRPretrainedQuestionEncoder,
DPRPretrainedReader,
DPRQuestionEncoder,
DPRReader,
)
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
from .modeling_encoder_decoder import EncoderDecoderModel
from .modeling_flaubert import (
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
) )
from .modeling_gpt2 import ( from .modeling_gpt2 import (
GPT2PreTrainedModel, GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
GPT2Model,
GPT2LMHeadModel,
GPT2DoubleHeadsModel, GPT2DoubleHeadsModel,
GPT2LMHeadModel,
GPT2Model,
GPT2PreTrainedModel,
load_tf_weights_in_gpt2, load_tf_weights_in_gpt2,
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
) )
from .modeling_ctrl import CTRLPreTrainedModel, CTRLModel, CTRLLMHeadModel, CTRL_PRETRAINED_MODEL_ARCHIVE_LIST from .modeling_longformer import (
from .modeling_xlnet import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetPreTrainedModel, LongformerForMaskedLM,
XLNetModel, LongformerForMultipleChoice,
XLNetLMHeadModel, LongformerForQuestionAnswering,
XLNetForSequenceClassification, LongformerForSequenceClassification,
XLNetForTokenClassification, LongformerForTokenClassification,
XLNetForMultipleChoice, LongformerModel,
XLNetForQuestionAnsweringSimple, LongformerSelfAttention,
XLNetForQuestionAnswering,
load_tf_weights_in_xlnet,
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
) )
from .modeling_xlm import ( from .modeling_marian import MarianMTModel
XLMPreTrainedModel, from .modeling_mbart import MBartForConditionalGeneration
XLMModel, from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
XLMWithLMHeadModel, from .modeling_mobilebert import (
XLMForSequenceClassification, MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForTokenClassification, MobileBertForMaskedLM,
XLMForQuestionAnswering, MobileBertForMultipleChoice,
XLMForQuestionAnsweringSimple, MobileBertForNextSentencePrediction,
XLMForMultipleChoice, MobileBertForPreTraining,
XLM_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
from .modeling_openai import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
OpenAIGPTPreTrainedModel,
load_tf_weights_in_openai_gpt,
) )
from .modeling_pegasus import PegasusForConditionalGeneration from .modeling_pegasus import PegasusForConditionalGeneration
from .modeling_bart import ( from .modeling_reformer import (
PretrainedBartModel, REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
BartForSequenceClassification, ReformerAttention,
BartModel, ReformerForMaskedLM,
BartForConditionalGeneration, ReformerForQuestionAnswering,
BartForQuestionAnswering, ReformerForSequenceClassification,
BART_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
) )
from .modeling_mbart import MBartForConditionalGeneration from .modeling_retribert import RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RetriBertModel, RetriBertPreTrainedModel
from .modeling_marian import MarianMTModel
from .tokenization_marian import MarianTokenizer
from .modeling_roberta import ( from .modeling_roberta import (
RobertaForMaskedLM, ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM, RobertaForCausalLM,
RobertaModel, RobertaForMaskedLM,
RobertaForSequenceClassification,
RobertaForMultipleChoice, RobertaForMultipleChoice,
RobertaForTokenClassification,
RobertaForQuestionAnswering, RobertaForQuestionAnswering,
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForSequenceClassification,
) RobertaForTokenClassification,
from .modeling_distilbert import ( RobertaModel,
DistilBertPreTrainedModel,
DistilBertForMaskedLM,
DistilBertModel,
DistilBertForMultipleChoice,
DistilBertForSequenceClassification,
DistilBertForQuestionAnswering,
DistilBertForTokenClassification,
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
)
from .modeling_camembert import (
CamembertForMaskedLM,
CamembertModel,
CamembertForSequenceClassification,
CamembertForMultipleChoice,
CamembertForTokenClassification,
CamembertForQuestionAnswering,
CamembertForCausalLM,
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
) )
from .modeling_encoder_decoder import EncoderDecoderModel
from .modeling_t5 import ( from .modeling_t5 import (
T5PreTrainedModel, T5_PRETRAINED_MODEL_ARCHIVE_LIST,
T5Model,
T5ForConditionalGeneration, T5ForConditionalGeneration,
T5Model,
T5PreTrainedModel,
load_tf_weights_in_t5, load_tf_weights_in_t5,
T5_PRETRAINED_MODEL_ARCHIVE_LIST,
) )
from .modeling_albert import ( from .modeling_transfo_xl import (
AlbertPreTrainedModel, TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertModel, AdaptiveEmbedding,
AlbertForPreTraining, TransfoXLLMHeadModel,
AlbertForMaskedLM, TransfoXLModel,
AlbertForMultipleChoice, TransfoXLPreTrainedModel,
AlbertForSequenceClassification, load_tf_weights_in_transfo_xl,
AlbertForQuestionAnswering, )
AlbertForTokenClassification, from .modeling_utils import Conv1D, PreTrainedModel, apply_chunking_to_forward, prune_layer
load_tf_weights_in_albert, from .modeling_xlm import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
) )
from .modeling_xlm_roberta import ( from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForMaskedLM, XLMRobertaForMaskedLM,
XLMRobertaModel,
XLMRobertaForMultipleChoice, XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification, XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification, XLMRobertaForTokenClassification,
XLMRobertaForQuestionAnswering, XLMRobertaModel,
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
)
from .modeling_mmbt import ModalEmbeddings, MMBTModel, MMBTForClassification
from .modeling_flaubert import (
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
)
from .modeling_electra import (
ElectraForPreTraining,
ElectraForMaskedLM,
ElectraForTokenClassification,
ElectraPreTrainedModel,
ElectraForMultipleChoice,
ElectraForSequenceClassification,
ElectraForQuestionAnswering,
ElectraModel,
load_tf_weights_in_electra,
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
)
from .modeling_reformer import (
ReformerAttention,
ReformerLayer,
ReformerModel,
ReformerForMaskedLM,
ReformerModelWithLMHead,
ReformerForSequenceClassification,
ReformerForQuestionAnswering,
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
from .modeling_longformer import (
LongformerModel,
LongformerForMaskedLM,
LongformerForSequenceClassification,
LongformerForMultipleChoice,
LongformerForTokenClassification,
LongformerForQuestionAnswering,
LongformerSelfAttention,
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
from .modeling_dpr import (
DPRPretrainedContextEncoder,
DPRPretrainedQuestionEncoder,
DPRPretrainedReader,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
) )
from .modeling_retribert import ( from .modeling_xlnet import (
RetriBertPreTrainedModel, XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
RetriBertModel, XLNetForMultipleChoice,
RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
) )
# Optimization # Optimization
...@@ -436,78 +441,55 @@ if is_torch_available(): ...@@ -436,78 +441,55 @@ if is_torch_available():
get_linear_schedule_with_warmup, get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup,
) )
from .tokenization_marian import MarianTokenizer
# Trainer # Trainer
from .trainer import Trainer, set_seed, torch_distributed_zero_first, EvalPrediction from .trainer import EvalPrediction, Trainer, set_seed, torch_distributed_zero_first
from .data.data_collator import (
default_data_collator,
DataCollator,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorWithPadding,
)
from .data.datasets import (
GlueDataset,
TextDataset,
LineByLineTextDataset,
GlueDataTrainingArguments,
SquadDataset,
SquadDataTrainingArguments,
)
# Benchmarks
from .benchmark.benchmark import PyTorchBenchmark
from .benchmark.benchmark_args import PyTorchBenchmarkArguments
# TensorFlow # TensorFlow
if is_tf_available(): if is_tf_available():
from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments
# Benchmarks
from .benchmark.benchmark_tf import TensorFlowBenchmark
from .generation_tf_utils import tf_top_k_top_p_filtering from .generation_tf_utils import tf_top_k_top_p_filtering
from .modeling_tf_utils import ( from .modeling_tf_albert import (
shape_list, TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFPreTrainedModel, TFAlbertForMaskedLM,
TFSequenceSummary, TFAlbertForMultipleChoice,
TFSharedEmbeddings, TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
) )
from .modeling_tf_auto import ( from .modeling_tf_auto import (
TF_MODEL_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TFAutoModel, TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForMultipleChoice, TFAutoModelForMultipleChoice,
TFAutoModelForPreTraining, TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering, TFAutoModelForQuestionAnswering,
TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification, TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification, TFAutoModelForTokenClassification,
TFAutoModelWithLMHead, TFAutoModelWithLMHead,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForSeq2SeqLM,
)
from .modeling_tf_albert import (
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
) )
from .modeling_tf_bert import ( from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings, TFBertEmbeddings,
TFBertLMHeadModel,
TFBertForMaskedLM, TFBertForMaskedLM,
TFBertForMultipleChoice, TFBertForMultipleChoice,
TFBertForNextSentencePrediction, TFBertForNextSentencePrediction,
...@@ -515,28 +497,26 @@ if is_tf_available(): ...@@ -515,28 +497,26 @@ if is_tf_available():
TFBertForQuestionAnswering, TFBertForQuestionAnswering,
TFBertForSequenceClassification, TFBertForSequenceClassification,
TFBertForTokenClassification, TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer, TFBertMainLayer,
TFBertModel, TFBertModel,
TFBertPreTrainedModel, TFBertPreTrainedModel,
) )
from .modeling_tf_camembert import ( from .modeling_tf_camembert import (
TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCamembertForMaskedLM, TFCamembertForMaskedLM,
TFCamembertModel,
TFCamembertForMultipleChoice, TFCamembertForMultipleChoice,
TFCamembertForQuestionAnswering, TFCamembertForQuestionAnswering,
TFCamembertForSequenceClassification, TFCamembertForSequenceClassification,
TFCamembertForTokenClassification, TFCamembertForTokenClassification,
TFCamembertModel,
) )
from .modeling_tf_ctrl import ( from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLLMHeadModel, TFCTRLLMHeadModel,
TFCTRLModel, TFCTRLModel,
TFCTRLPreTrainedModel, TFCTRLPreTrainedModel,
) )
from .modeling_tf_distilbert import ( from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM, TFDistilBertForMaskedLM,
...@@ -548,7 +528,6 @@ if is_tf_available(): ...@@ -548,7 +528,6 @@ if is_tf_available():
TFDistilBertModel, TFDistilBertModel,
TFDistilBertPreTrainedModel, TFDistilBertPreTrainedModel,
) )
from .modeling_tf_electra import ( from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM, TFElectraForMaskedLM,
...@@ -560,17 +539,15 @@ if is_tf_available(): ...@@ -560,17 +539,15 @@ if is_tf_available():
TFElectraModel, TFElectraModel,
TFElectraPreTrainedModel, TFElectraPreTrainedModel,
) )
from .modeling_tf_flaubert import ( from .modeling_tf_flaubert import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFlaubertForMultipleChoice, TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple, TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification, TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification, TFFlaubertForTokenClassification,
TFFlaubertWithLMHeadModel,
TFFlaubertModel, TFFlaubertModel,
TFFlaubertWithLMHeadModel,
) )
from .modeling_tf_gpt2 import ( from .modeling_tf_gpt2 import (
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGPT2DoubleHeadsModel, TFGPT2DoubleHeadsModel,
...@@ -579,29 +556,26 @@ if is_tf_available(): ...@@ -579,29 +556,26 @@ if is_tf_available():
TFGPT2Model, TFGPT2Model,
TFGPT2PreTrainedModel, TFGPT2PreTrainedModel,
) )
from .modeling_tf_longformer import ( from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerModel,
TFLongformerForMaskedLM, TFLongformerForMaskedLM,
TFLongformerForQuestionAnswering, TFLongformerForQuestionAnswering,
TFLongformerModel,
TFLongformerSelfAttention, TFLongformerSelfAttention,
) )
from .modeling_tf_mobilebert import ( from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
TFMobileBertForPreTraining,
TFMobileBertForSequenceClassification,
TFMobileBertForQuestionAnswering,
TFMobileBertForMaskedLM, TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForMultipleChoice, TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification, TFMobileBertForTokenClassification,
TFMobileBertMainLayer, TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
) )
from .modeling_tf_openai import ( from .modeling_tf_openai import (
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTDoubleHeadsModel,
...@@ -610,7 +584,6 @@ if is_tf_available(): ...@@ -610,7 +584,6 @@ if is_tf_available():
TFOpenAIGPTModel, TFOpenAIGPTModel,
TFOpenAIGPTPreTrainedModel, TFOpenAIGPTPreTrainedModel,
) )
from .modeling_tf_roberta import ( from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForMaskedLM, TFRobertaForMaskedLM,
...@@ -622,14 +595,12 @@ if is_tf_available(): ...@@ -622,14 +595,12 @@ if is_tf_available():
TFRobertaModel, TFRobertaModel,
TFRobertaPreTrainedModel, TFRobertaPreTrainedModel,
) )
from .modeling_tf_t5 import ( from .modeling_tf_t5 import (
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST, TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST,
TFT5ForConditionalGeneration, TFT5ForConditionalGeneration,
TFT5Model, TFT5Model,
TFT5PreTrainedModel, TFT5PreTrainedModel,
) )
from .modeling_tf_transfo_xl import ( from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding, TFAdaptiveEmbedding,
...@@ -638,19 +609,18 @@ if is_tf_available(): ...@@ -638,19 +609,18 @@ if is_tf_available():
TFTransfoXLModel, TFTransfoXLModel,
TFTransfoXLPreTrainedModel, TFTransfoXLPreTrainedModel,
) )
from .modeling_tf_utils import TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, shape_list
from .modeling_tf_xlm import ( from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice, TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple, TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification, TFXLMForSequenceClassification,
TFXLMForTokenClassification, TFXLMForTokenClassification,
TFXLMWithLMHeadModel,
TFXLMMainLayer, TFXLMMainLayer,
TFXLMModel, TFXLMModel,
TFXLMPreTrainedModel, TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
) )
from .modeling_tf_xlm_roberta import ( from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForMaskedLM, TFXLMRobertaForMaskedLM,
...@@ -660,7 +630,6 @@ if is_tf_available(): ...@@ -660,7 +630,6 @@ if is_tf_available():
TFXLMRobertaForTokenClassification, TFXLMRobertaForTokenClassification,
TFXLMRobertaModel, TFXLMRobertaModel,
) )
from .modeling_tf_xlnet import ( from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice, TFXLNetForMultipleChoice,
...@@ -674,20 +643,11 @@ if is_tf_available(): ...@@ -674,20 +643,11 @@ if is_tf_available():
) )
# Optimization # Optimization
from .optimization_tf import ( from .optimization_tf import AdamWeightDecay, GradientAccumulator, WarmUp, create_optimizer
AdamWeightDecay,
create_optimizer,
GradientAccumulator,
WarmUp,
)
# Trainer # Trainer
from .trainer_tf import TFTrainer from .trainer_tf import TFTrainer
# Benchmarks
from .benchmark.benchmark_tf import TensorFlowBenchmark
from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments
if not is_tf_available() and not is_torch_available(): if not is_tf_available() and not is_torch_available():
logger.warning( logger.warning(
......
...@@ -22,14 +22,9 @@ import logging ...@@ -22,14 +22,9 @@ import logging
import timeit import timeit
from typing import Callable, Optional from typing import Callable, Optional
from transformers import ( from ..configuration_utils import PretrainedConfig
MODEL_MAPPING, from ..file_utils import is_py3nvml_available, is_torch_available
MODEL_WITH_LM_HEAD_MAPPING, from ..modeling_auto import MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING
PretrainedConfig,
is_py3nvml_available,
is_torch_available,
)
from .benchmark_utils import ( from .benchmark_utils import (
Benchmark, Benchmark,
Memory, Memory,
...@@ -42,6 +37,7 @@ from .benchmark_utils import ( ...@@ -42,6 +37,7 @@ from .benchmark_utils import (
if is_torch_available(): if is_torch_available():
import torch import torch
from .benchmark_args import PyTorchBenchmarkArguments from .benchmark_args import PyTorchBenchmarkArguments
......
...@@ -24,14 +24,9 @@ import timeit ...@@ -24,14 +24,9 @@ import timeit
from functools import wraps from functools import wraps
from typing import Callable, Optional from typing import Callable, Optional
from transformers import ( from ..configuration_utils import PretrainedConfig
TF_MODEL_MAPPING, from ..file_utils import is_py3nvml_available, is_tf_available
TF_MODEL_WITH_LM_HEAD_MAPPING, from ..modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
PretrainedConfig,
is_py3nvml_available,
is_tf_available,
)
from .benchmark_utils import ( from .benchmark_utils import (
Benchmark, Benchmark,
Memory, Memory,
...@@ -44,9 +39,10 @@ from .benchmark_utils import ( ...@@ -44,9 +39,10 @@ from .benchmark_utils import (
if is_tf_available(): if is_tf_available():
import tensorflow as tf import tensorflow as tf
from .benchmark_args_tf import TensorFlowBenchmarkArguments
from tensorflow.python.framework.errors_impl import ResourceExhaustedError from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_py3nvml_available(): if is_py3nvml_available():
import py3nvml.py3nvml as nvml import py3nvml.py3nvml as nvml
......
...@@ -8,11 +8,11 @@ from transformers.pipelines import SUPPORTED_TASKS, pipeline ...@@ -8,11 +8,11 @@ from transformers.pipelines import SUPPORTED_TASKS, pipeline
try: try:
from uvicorn import run from fastapi import Body, FastAPI, HTTPException
from fastapi import FastAPI, HTTPException, Body
from fastapi.routing import APIRoute from fastapi.routing import APIRoute
from pydantic import BaseModel from pydantic import BaseModel
from starlette.responses import JSONResponse from starlette.responses import JSONResponse
from uvicorn import run
_serve_dependencies_installed = True _serve_dependencies_installed = True
except (ImportError, AttributeError): except (ImportError, AttributeError):
......
...@@ -5,7 +5,6 @@ from getpass import getpass ...@@ -5,7 +5,6 @@ from getpass import getpass
from typing import List, Union from typing import List, Union
from requests.exceptions import HTTPError from requests.exceptions import HTTPError
from transformers.commands import BaseTransformersCLICommand from transformers.commands import BaseTransformersCLICommand
from transformers.hf_api import HfApi, HfFolder from transformers.hf_api import HfApi, HfFolder
......
...@@ -273,7 +273,9 @@ def convert_tensorflow(nlp: Pipeline, opset: int, output: Path): ...@@ -273,7 +273,9 @@ def convert_tensorflow(nlp: Pipeline, opset: int, output: Path):
try: try:
import tensorflow as tf import tensorflow as tf
from keras2onnx import convert_keras, save_model, __version__ as k2ov
from keras2onnx import __version__ as k2ov
from keras2onnx import convert_keras, save_model
print(f"Using framework TensorFlow: {tf.version.VERSION}, keras2onnx: {k2ov}") print(f"Using framework TensorFlow: {tf.version.VERSION}, keras2onnx: {k2ov}")
...@@ -340,7 +342,7 @@ def optimize(onnx_model_path: Path) -> Path: ...@@ -340,7 +342,7 @@ def optimize(onnx_model_path: Path) -> Path:
Returns: Path where the optimized model binary description has been saved Returns: Path where the optimized model binary description has been saved
""" """
from onnxruntime import SessionOptions, InferenceSession from onnxruntime import InferenceSession, SessionOptions
# Generate model name with suffix "optimized" # Generate model name with suffix "optimized"
opt_model_path = generate_identified_filename(onnx_model_path, "-optimized") opt_model_path = generate_identified_filename(onnx_model_path, "-optimized")
...@@ -364,7 +366,7 @@ def quantize(onnx_model_path: Path) -> Path: ...@@ -364,7 +366,7 @@ def quantize(onnx_model_path: Path) -> Path:
""" """
try: try:
import onnx import onnx
from onnxruntime.quantization import quantize, QuantizationMode from onnxruntime.quantization import QuantizationMode, quantize
onnx_model = onnx.load(onnx_model_path.as_posix()) onnx_model = onnx.load(onnx_model_path.as_posix())
......
...@@ -78,28 +78,29 @@ from transformers.file_utils import hf_bucket_url ...@@ -78,28 +78,29 @@ from transformers.file_utils import hf_bucket_url
if is_torch_available(): if is_torch_available():
import torch
import numpy as np import numpy as np
import torch
from transformers import ( from transformers import (
AlbertForPreTraining,
BertForPreTraining, BertForPreTraining,
BertForQuestionAnswering, BertForQuestionAnswering,
BertForSequenceClassification, BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPT2LMHeadModel, GPT2LMHeadModel,
XLNetLMHeadModel,
XLMWithLMHeadModel,
XLMRobertaForMaskedLM,
TransfoXLLMHeadModel,
OpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel,
RobertaForMaskedLM, RobertaForMaskedLM,
RobertaForSequenceClassification, RobertaForSequenceClassification,
CamembertForMaskedLM,
FlaubertWithLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
CTRLLMHeadModel,
AlbertForPreTraining,
T5ForConditionalGeneration, T5ForConditionalGeneration,
ElectraForPreTraining, TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
) )
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment