"examples/legacy/run_language_modeling.py" did not exist on "a75c64d80c76c3dc71f735d9197a4a601847e0cd"
Unverified Commit a14b055b authored by Albert Villanova del Moral's avatar Albert Villanova del Moral Committed by GitHub
Browse files

Pass datasets trust_remote_code (#31406)

* Pass datasets trust_remote_code

* Pass trust_remote_code in more tests

* Add trust_remote_dataset_code arg to some tests

* Revert "Temporarily pin datasets upper version to fix CI"

This reverts commit b7672826.

* Pass trust_remote_code in librispeech_asr_dummy docstrings

* Revert "Pin datasets<2.20.0 for examples"

This reverts commit 833fc17a.

* Pass trust_remote_code to all examples

* Revert "Add trust_remote_dataset_code arg to some tests" to research_projects

* Pass trust_remote_code to tests

* Pass trust_remote_code to docstrings

* Fix flax examples tests requirements

* Pass trust_remote_dataset_code arg to tests

* Replace trust_remote_dataset_code with trust_remote_code in one example

* Fix duplicate trust_remote_code

* Replace args.trust_remote_dataset_code with args.trust_remote_code

* Replace trust_remote_dataset_code with trust_remote_code in parser

* Replace trust_remote_dataset_code with trust_remote_code in dataclasses

* Replace trust_remote_dataset_code with trust_remote_code arg
parent 485fd814
...@@ -1601,7 +1601,7 @@ class TFLayoutLMForQuestionAnswering(TFLayoutLMPreTrainedModel, TFQuestionAnswer ...@@ -1601,7 +1601,7 @@ class TFLayoutLMForQuestionAnswering(TFLayoutLMPreTrainedModel, TFQuestionAnswer
>>> tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa", add_prefix_space=True) >>> tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa", add_prefix_space=True)
>>> model = TFLayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="1e3ebac") >>> model = TFLayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="1e3ebac")
>>> dataset = load_dataset("nielsr/funsd", split="train") >>> dataset = load_dataset("nielsr/funsd", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> question = "what's his name?" >>> question = "what's his name?"
>>> words = example["words"] >>> words = example["words"]
......
...@@ -838,7 +838,7 @@ class LayoutLMv2Model(LayoutLMv2PreTrainedModel): ...@@ -838,7 +838,7 @@ class LayoutLMv2Model(LayoutLMv2PreTrainedModel):
>>> model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased") >>> model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa") >>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa", trust_remote_code=True)
>>> image_path = dataset["test"][0]["file"] >>> image_path = dataset["test"][0]["file"]
>>> image = Image.open(image_path).convert("RGB") >>> image = Image.open(image_path).convert("RGB")
...@@ -1005,7 +1005,7 @@ class LayoutLMv2ForSequenceClassification(LayoutLMv2PreTrainedModel): ...@@ -1005,7 +1005,7 @@ class LayoutLMv2ForSequenceClassification(LayoutLMv2PreTrainedModel):
>>> set_seed(0) >>> set_seed(0)
>>> dataset = load_dataset("rvl_cdip", split="train", streaming=True) >>> dataset = load_dataset("aharley/rvl_cdip", split="train", streaming=True, trust_remote_code=True)
>>> data = next(iter(dataset)) >>> data = next(iter(dataset))
>>> image = data["image"].convert("RGB") >>> image = data["image"].convert("RGB")
...@@ -1184,7 +1184,7 @@ class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel): ...@@ -1184,7 +1184,7 @@ class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel):
>>> set_seed(0) >>> set_seed(0)
>>> datasets = load_dataset("nielsr/funsd", split="test") >>> datasets = load_dataset("nielsr/funsd", split="test", trust_remote_code=True)
>>> labels = datasets.features["ner_tags"].feature.names >>> labels = datasets.features["ner_tags"].feature.names
>>> id2label = {v: k for v, k in enumerate(labels)} >>> id2label = {v: k for v, k in enumerate(labels)}
...@@ -1328,7 +1328,7 @@ class LayoutLMv2ForQuestionAnswering(LayoutLMv2PreTrainedModel): ...@@ -1328,7 +1328,7 @@ class LayoutLMv2ForQuestionAnswering(LayoutLMv2PreTrainedModel):
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> model = LayoutLMv2ForQuestionAnswering.from_pretrained("microsoft/layoutlmv2-base-uncased") >>> model = LayoutLMv2ForQuestionAnswering.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa") >>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa", trust_remote_code=True)
>>> image_path = dataset["test"][0]["file"] >>> image_path = dataset["test"][0]["file"]
>>> image = Image.open(image_path).convert("RGB") >>> image = Image.open(image_path).convert("RGB")
>>> question = "When is coffee break?" >>> question = "When is coffee break?"
......
...@@ -859,7 +859,7 @@ class LayoutLMv3Model(LayoutLMv3PreTrainedModel): ...@@ -859,7 +859,7 @@ class LayoutLMv3Model(LayoutLMv3PreTrainedModel):
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
>>> model = AutoModel.from_pretrained("microsoft/layoutlmv3-base") >>> model = AutoModel.from_pretrained("microsoft/layoutlmv3-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> words = example["tokens"] >>> words = example["tokens"]
...@@ -1075,7 +1075,7 @@ class LayoutLMv3ForTokenClassification(LayoutLMv3PreTrainedModel): ...@@ -1075,7 +1075,7 @@ class LayoutLMv3ForTokenClassification(LayoutLMv3PreTrainedModel):
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
>>> model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=7) >>> model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=7)
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> words = example["tokens"] >>> words = example["tokens"]
...@@ -1191,7 +1191,7 @@ class LayoutLMv3ForQuestionAnswering(LayoutLMv3PreTrainedModel): ...@@ -1191,7 +1191,7 @@ class LayoutLMv3ForQuestionAnswering(LayoutLMv3PreTrainedModel):
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
>>> model = AutoModelForQuestionAnswering.from_pretrained("microsoft/layoutlmv3-base") >>> model = AutoModelForQuestionAnswering.from_pretrained("microsoft/layoutlmv3-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> question = "what's his name?" >>> question = "what's his name?"
...@@ -1311,7 +1311,7 @@ class LayoutLMv3ForSequenceClassification(LayoutLMv3PreTrainedModel): ...@@ -1311,7 +1311,7 @@ class LayoutLMv3ForSequenceClassification(LayoutLMv3PreTrainedModel):
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
>>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> words = example["tokens"] >>> words = example["tokens"]
......
...@@ -1296,7 +1296,7 @@ class TFLayoutLMv3Model(TFLayoutLMv3PreTrainedModel): ...@@ -1296,7 +1296,7 @@ class TFLayoutLMv3Model(TFLayoutLMv3PreTrainedModel):
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
>>> model = TFAutoModel.from_pretrained("microsoft/layoutlmv3-base") >>> model = TFAutoModel.from_pretrained("microsoft/layoutlmv3-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> words = example["tokens"] >>> words = example["tokens"]
...@@ -1439,7 +1439,7 @@ class TFLayoutLMv3ForSequenceClassification(TFLayoutLMv3PreTrainedModel, TFSeque ...@@ -1439,7 +1439,7 @@ class TFLayoutLMv3ForSequenceClassification(TFLayoutLMv3PreTrainedModel, TFSeque
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
>>> model = TFAutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") >>> model = TFAutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> words = example["tokens"] >>> words = example["tokens"]
...@@ -1566,7 +1566,7 @@ class TFLayoutLMv3ForTokenClassification(TFLayoutLMv3PreTrainedModel, TFTokenCla ...@@ -1566,7 +1566,7 @@ class TFLayoutLMv3ForTokenClassification(TFLayoutLMv3PreTrainedModel, TFTokenCla
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
>>> model = TFAutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=7) >>> model = TFAutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=7)
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> words = example["tokens"] >>> words = example["tokens"]
...@@ -1703,7 +1703,7 @@ class TFLayoutLMv3ForQuestionAnswering(TFLayoutLMv3PreTrainedModel, TFQuestionAn ...@@ -1703,7 +1703,7 @@ class TFLayoutLMv3ForQuestionAnswering(TFLayoutLMv3PreTrainedModel, TFQuestionAn
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("microsoft/layoutlmv3-base") >>> model = TFAutoModelForQuestionAnswering.from_pretrained("microsoft/layoutlmv3-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> question = "what's his name?" >>> question = "what's his name?"
......
...@@ -729,7 +729,7 @@ class LiltModel(LiltPreTrainedModel): ...@@ -729,7 +729,7 @@ class LiltModel(LiltPreTrainedModel):
>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> words = example["tokens"] >>> words = example["tokens"]
>>> boxes = example["bboxes"] >>> boxes = example["bboxes"]
...@@ -868,7 +868,7 @@ class LiltForSequenceClassification(LiltPreTrainedModel): ...@@ -868,7 +868,7 @@ class LiltForSequenceClassification(LiltPreTrainedModel):
>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> words = example["tokens"] >>> words = example["tokens"]
>>> boxes = example["bboxes"] >>> boxes = example["bboxes"]
...@@ -987,7 +987,7 @@ class LiltForTokenClassification(LiltPreTrainedModel): ...@@ -987,7 +987,7 @@ class LiltForTokenClassification(LiltPreTrainedModel):
>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> words = example["tokens"] >>> words = example["tokens"]
>>> boxes = example["bboxes"] >>> boxes = example["bboxes"]
...@@ -1116,7 +1116,7 @@ class LiltForQuestionAnswering(LiltPreTrainedModel): ...@@ -1116,7 +1116,7 @@ class LiltForQuestionAnswering(LiltPreTrainedModel):
>>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> words = example["tokens"] >>> words = example["tokens"]
>>> boxes = example["bboxes"] >>> boxes = example["bboxes"]
......
...@@ -463,7 +463,7 @@ class SpeechEncoderDecoderModel(PreTrainedModel): ...@@ -463,7 +463,7 @@ class SpeechEncoderDecoderModel(PreTrainedModel):
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15")
>>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values >>> input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values
>>> # Inference: Translate English speech to German >>> # Inference: Translate English speech to German
......
...@@ -1129,7 +1129,7 @@ class Speech2TextModel(Speech2TextPreTrainedModel): ...@@ -1129,7 +1129,7 @@ class Speech2TextModel(Speech2TextPreTrainedModel):
>>> model = Speech2TextModel.from_pretrained("facebook/s2t-small-librispeech-asr") >>> model = Speech2TextModel.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> inputs = feature_extractor( >>> inputs = feature_extractor(
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
... ) ... )
...@@ -1270,7 +1270,7 @@ class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel): ...@@ -1270,7 +1270,7 @@ class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel):
>>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> inputs = processor( >>> inputs = processor(
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
......
...@@ -1483,7 +1483,7 @@ class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCaus ...@@ -1483,7 +1483,7 @@ class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCaus
... return batch ... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> ds = ds.map(map_to_array) >>> ds = ds.map(map_to_array)
>>> ds.set_format(type="tf") >>> ds.set_format(type="tf")
......
...@@ -2338,7 +2338,7 @@ class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel): ...@@ -2338,7 +2338,7 @@ class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel):
>>> from datasets import load_dataset >>> from datasets import load_dataset
>>> dataset = load_dataset( >>> dataset = load_dataset(
... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation" ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True
... ) # doctest: +IGNORE_RESULT ... ) # doctest: +IGNORE_RESULT
>>> dataset = dataset.sort("id") >>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate >>> sampling_rate = dataset.features["audio"].sampling_rate
...@@ -3024,7 +3024,7 @@ class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel): ...@@ -3024,7 +3024,7 @@ class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel):
>>> import torch >>> import torch
>>> dataset = load_dataset( >>> dataset = load_dataset(
... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation" ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True
... ) # doctest: +IGNORE_RESULT ... ) # doctest: +IGNORE_RESULT
>>> dataset = dataset.sort("id") >>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate >>> sampling_rate = dataset.features["audio"].sampling_rate
......
...@@ -1602,7 +1602,7 @@ class UdopModel(UdopPreTrainedModel): ...@@ -1602,7 +1602,7 @@ class UdopModel(UdopPreTrainedModel):
>>> # load an example image, along with the words and coordinates >>> # load an example image, along with the words and coordinates
>>> # which were extracted using an OCR engine >>> # which were extracted using an OCR engine
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> words = example["tokens"] >>> words = example["tokens"]
...@@ -1781,7 +1781,7 @@ class UdopForConditionalGeneration(UdopPreTrainedModel): ...@@ -1781,7 +1781,7 @@ class UdopForConditionalGeneration(UdopPreTrainedModel):
>>> # load an example image, along with the words and coordinates >>> # load an example image, along with the words and coordinates
>>> # which were extracted using an OCR engine >>> # which were extracted using an OCR engine
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> words = example["tokens"] >>> words = example["tokens"]
...@@ -2009,7 +2009,7 @@ class UdopEncoderModel(UdopPreTrainedModel): ...@@ -2009,7 +2009,7 @@ class UdopEncoderModel(UdopPreTrainedModel):
>>> # load an example image, along with the words and coordinates >>> # load an example image, along with the words and coordinates
>>> # which were extracted using an OCR engine >>> # which were extracted using an OCR engine
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True)
>>> example = dataset[0] >>> example = dataset[0]
>>> image = example["image"] >>> image = example["image"]
>>> words = example["tokens"] >>> words = example["tokens"]
......
...@@ -525,7 +525,7 @@ class UnivNetModel(PreTrainedModel): ...@@ -525,7 +525,7 @@ class UnivNetModel(PreTrainedModel):
>>> model = UnivNetModel.from_pretrained("dg845/univnet-dev") >>> model = UnivNetModel.from_pretrained("dg845/univnet-dev")
>>> feature_extractor = UnivNetFeatureExtractor.from_pretrained("dg845/univnet-dev") >>> feature_extractor = UnivNetFeatureExtractor.from_pretrained("dg845/univnet-dev")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> # Resample the audio to the feature extractor's sampling rate. >>> # Resample the audio to the feature extractor's sampling rate.
>>> ds = ds.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate)) >>> ds = ds.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
>>> inputs = feature_extractor( >>> inputs = feature_extractor(
......
...@@ -1076,7 +1076,7 @@ FLAX_WAV2VEC2_MODEL_DOCSTRING = """ ...@@ -1076,7 +1076,7 @@ FLAX_WAV2VEC2_MODEL_DOCSTRING = """
... return batch ... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> ds = ds.map(map_to_array) >>> ds = ds.map(map_to_array)
>>> input_values = processor( >>> input_values = processor(
...@@ -1195,7 +1195,7 @@ FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """ ...@@ -1195,7 +1195,7 @@ FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """
... return batch ... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> ds = ds.map(map_to_array) >>> ds = ds.map(map_to_array)
>>> input_values = processor( >>> input_values = processor(
...@@ -1396,7 +1396,7 @@ FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING = """ ...@@ -1396,7 +1396,7 @@ FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING = """
... return batch ... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> ds = ds.map(map_to_array) >>> ds = ds.map(map_to_array)
>>> input_values = feature_extractor(ds["speech"][0], return_tensors="np").input_values # Batch size 1 >>> input_values = feature_extractor(ds["speech"][0], return_tensors="np").input_values # Batch size 1
......
...@@ -1542,7 +1542,7 @@ class TFWav2Vec2Model(TFWav2Vec2PreTrainedModel): ...@@ -1542,7 +1542,7 @@ class TFWav2Vec2Model(TFWav2Vec2PreTrainedModel):
... return batch ... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> ds = ds.map(map_to_array) >>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1
...@@ -1654,7 +1654,7 @@ class TFWav2Vec2ForCTC(TFWav2Vec2PreTrainedModel): ...@@ -1654,7 +1654,7 @@ class TFWav2Vec2ForCTC(TFWav2Vec2PreTrainedModel):
... return batch ... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> ds = ds.map(map_to_array) >>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1
......
...@@ -2045,7 +2045,7 @@ class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel): ...@@ -2045,7 +2045,7 @@ class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel):
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
>>> model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base") >>> model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
>>> # compute masked indices >>> # compute masked indices
......
...@@ -590,7 +590,7 @@ class Wav2Vec2CTCTokenizer(PreTrainedTokenizer): ...@@ -590,7 +590,7 @@ class Wav2Vec2CTCTokenizer(PreTrainedTokenizer):
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # load first sample of English common_voice >>> # load first sample of English common_voice
>>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True) >>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True, trust_remote_code=True)
>>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
>>> dataset_iter = iter(dataset) >>> dataset_iter = iter(dataset)
>>> sample = next(dataset_iter) >>> sample = next(dataset_iter)
......
...@@ -1453,7 +1453,7 @@ class Wav2Vec2ConformerForPreTraining(Wav2Vec2ConformerPreTrainedModel): ...@@ -1453,7 +1453,7 @@ class Wav2Vec2ConformerForPreTraining(Wav2Vec2ConformerPreTrainedModel):
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
>>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") >>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
>>> # compute masked indices >>> # compute masked indices
......
...@@ -545,7 +545,7 @@ class Wav2Vec2ProcessorWithLM(ProcessorMixin): ...@@ -545,7 +545,7 @@ class Wav2Vec2ProcessorWithLM(ProcessorMixin):
>>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") >>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm")
>>> # load first sample of English common_voice >>> # load first sample of English common_voice
>>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True) >>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True, trust_remote_code=True)
>>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
>>> dataset_iter = iter(dataset) >>> dataset_iter = iter(dataset)
>>> sample = next(dataset_iter) >>> sample = next(dataset_iter)
......
...@@ -461,7 +461,7 @@ class WhisperGenerationMixin: ...@@ -461,7 +461,7 @@ class WhisperGenerationMixin:
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features >>> input_features = inputs.input_features
......
...@@ -985,7 +985,7 @@ class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel): ...@@ -985,7 +985,7 @@ class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel):
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
>>> input_features = inputs.input_features >>> input_features = inputs.input_features
>>> encoder_outputs = model.encode(input_features=input_features) >>> encoder_outputs = model.encode(input_features=input_features)
...@@ -1045,7 +1045,7 @@ class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel): ...@@ -1045,7 +1045,7 @@ class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel):
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> input_features = processor(ds[0]["audio"]["array"], return_tensors="np").input_features >>> input_features = processor(ds[0]["audio"]["array"], return_tensors="np").input_features
>>> encoder_outputs = model.encode(input_features=input_features) >>> encoder_outputs = model.encode(input_features=input_features)
...@@ -1297,7 +1297,7 @@ class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel): ...@@ -1297,7 +1297,7 @@ class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel):
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
>>> input_features = inputs.input_features >>> input_features = inputs.input_features
>>> encoder_outputs = model.encode(input_features=input_features) >>> encoder_outputs = model.encode(input_features=input_features)
...@@ -1516,7 +1516,7 @@ FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING = r""" ...@@ -1516,7 +1516,7 @@ FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING = r"""
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np")
>>> input_features = inputs.input_features >>> input_features = inputs.input_features
>>> generated_ids = model.generate(input_ids=input_features) >>> generated_ids = model.generate(input_ids=input_features)
...@@ -1670,7 +1670,7 @@ FLAX_WHISPER_AUDIO_CLASSIFICATION_DOCSTRING = r""" ...@@ -1670,7 +1670,7 @@ FLAX_WHISPER_AUDIO_CLASSIFICATION_DOCSTRING = r"""
>>> model = FlaxWhisperForAudioClassification.from_pretrained( >>> model = FlaxWhisperForAudioClassification.from_pretrained(
... "sanchit-gandhi/whisper-medium-fleurs-lang-id", from_pt=True ... "sanchit-gandhi/whisper-medium-fleurs-lang-id", from_pt=True
... ) ... )
>>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True, trust_remote_code=True)
>>> sample = next(iter(ds)) >>> sample = next(iter(ds))
......
...@@ -1147,7 +1147,7 @@ class TFWhisperMainLayer(keras.layers.Layer): ...@@ -1147,7 +1147,7 @@ class TFWhisperMainLayer(keras.layers.Layer):
>>> model = TFWhisperModel.from_pretrained("openai/whisper-base") >>> model = TFWhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features >>> input_features = inputs.input_features
>>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id >>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id
...@@ -1283,7 +1283,7 @@ class TFWhisperModel(TFWhisperPreTrainedModel): ...@@ -1283,7 +1283,7 @@ class TFWhisperModel(TFWhisperPreTrainedModel):
>>> model = TFWhisperModel.from_pretrained("openai/whisper-base") >>> model = TFWhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features >>> input_features = inputs.input_features
>>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id >>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id
...@@ -1413,7 +1413,7 @@ class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLangua ...@@ -1413,7 +1413,7 @@ class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLangua
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True)
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="tf") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features >>> input_features = inputs.input_features
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment