_If you use this model in your work, please cite this paper (to appear in 2020):_
```
@inproceedings{
title={KUISAIL at SemEval-2020 Task 12: BERT-CNN for Offensive Speech Identification in Social Media},
author={Safaya, Ali and Abdullatif, Moutasem and Yuret, Deniz},
booktitle={Proceedings of the International Workshop on Semantic Evaluation (SemEval)},
year={2020}
}
```
## Pretraining Corpus
`arabic-bert-medium` model was pretrained on ~8.2 Billion words:
- Arabic version of [OSCAR](https://traces1.inria.fr/oscar/) - filtered from [Common Crawl](http://commoncrawl.org/)
- Recent dump of Arabic [Wikipedia](https://dumps.wikimedia.org/backup-index.html)
and other Arabic resources which sum up to ~95GB of text.
__Notes on training data:__
- Our final version of corpus contains some non-Arabic words inlines, which we did not remove from sentences since that would affect some tasks like NER.
- Although non-Arabic characters were lowered as a preprocessing step, since Arabic characters does not have upper or lower case, there is no cased and uncased version of the model.
- The corpus and vocabulary set are not restricted to Modern Standard Arabic, they contain some dialectical Arabic too.
## Pretraining details
- This model was trained using Google BERT's github [repository](https://github.com/google-research/bert) on a single TPU v3-8 provided for free from [TFRC](https://www.tensorflow.org/tfrc).
- Our pretraining procedure follows training settings of bert with some changes: trained for 3M training steps with batchsize of 128, instead of 1M with batchsize of 256.
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: