-[GLaM: Generalist Language Model (GLaM)](https://ai.googleblog.com/2021/12/more-efficient-in-context-learning-with.html)
-[GLaM: Generalist Language Model (GLaM)](https://ai.googleblog.com/2021/12/more-efficient-in-context-learning-with.html)
PytorchにはDeepSpeedが構築したものもあります: [DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale](https://arxiv.org/abs/2201.05596)、[Mixture of Experts](https://www.deepspeed.ai/tutorials/mixture-of-experts/) - ブログ記事: [1](https://www.microsoft.com/en-us/research/blog/deepspeed-powers-8x-larger-moe-model-training-with-high-performance/)、[2](https://www.microsoft.com/en-us/research/publication/scalable-and-efficient-moe-training-for-multitask-multilingual-models/)、大規模なTransformerベースの自然言語生成モデルの具体的な展開については、[ブログ記事](https://www.deepspeed.ai/news/2021/12/09/deepspeed-moe-nlg.html)、[Megatron-Deepspeedブランチ](Thttps://github.com/microsoft/Megatron-DeepSpeed/tree/moe-training)を参照してください。
PytorchにはDeepSpeedが構築したものもあります: [DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale](https://arxiv.org/abs/2201.05596)、[Mixture of Experts](https://www.deepspeed.ai/tutorials/mixture-of-experts/) - ブログ記事: [1](https://www.microsoft.com/en-us/research/blog/deepspeed-powers-8x-larger-moe-model-training-with-high-performance/)、[2](https://www.microsoft.com/en-us/research/publication/scalable-and-efficient-moe-training-for-multitask-multilingual-models/)、大規模なTransformerベースの自然言語生成モデルの具体的な展開については、[ブログ記事](https://www.deepspeed.ai/2021/12/09/deepspeed-moe-nlg.html)、[Megatron-Deepspeedブランチ](https://github.com/microsoft/Megatron-DeepSpeed/tree/moe-training)を参照してください。
@@ -110,7 +110,7 @@ configuration 파일을 딕셔너리로 저장하거나 사용자 정의 configu
...
@@ -110,7 +110,7 @@ configuration 파일을 딕셔너리로 저장하거나 사용자 정의 configu
## 모델[[model]]
## 모델[[model]]
다음 단계는 [모델(model)](main_classes/models)을 만드는 것입니다. 느슨하게 아키텍처라고도 불리는 모델은 각 계층이 수행하는 동작과 발생하는 작업을 정의합니다. configuration의 `num_hidden_layers`와 같은 속성은 아키텍처를 정의하는 데 사용됩니다. 모든 모델은 기본 클래스 [`PreTrainedModel`]과 입력 임베딩 크기 조정 및 셀프 어텐션 헤드 가지 치기와 같은 몇 가지 일반적인 메소드를 공유합니다. 또한 모든 모델은 [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) 또는 [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module)의 서브클래스이기도 합니다. 즉, 모델은 각 프레임워크의 사용법과 호환됩니다.
다음 단계는 [모델(model)](main_classes/models)을 만드는 것입니다. 느슨하게 아키텍처라고도 불리는 모델은 각 계층이 수행하는 동작과 발생하는 작업을 정의합니다. configuration의 `num_hidden_layers`와 같은 속성은 아키텍처를 정의하는 데 사용됩니다. 모든 모델은 기본 클래스 [`PreTrainedModel`]과 입력 임베딩 크기 조정 및 셀프 어텐션 헤드 가지 치기와 같은 몇 가지 일반적인 메소드를 공유합니다. 또한 모든 모델은 [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) 또는 [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html)의 서브클래스이기도 합니다. 즉, 모델은 각 프레임워크의 사용법과 호환됩니다.
@@ -54,7 +54,7 @@ rendered properly in your Markdown viewer.
...
@@ -54,7 +54,7 @@ rendered properly in your Markdown viewer.
이 라이브러리는 각 모델에 대해 세 가지 유형의 클래스를 기반으로 구축되었습니다:
이 라이브러리는 각 모델에 대해 세 가지 유형의 클래스를 기반으로 구축되었습니다:
-**모델 클래스**는 라이브러리에서 제공하는 사전 훈련된 가중치와 함께 작동하는 PyTorch 모델([torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)), Keras 모델([tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)), JAX/Flax 모델([flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen.html))일 수 있습니다.
-**모델 클래스**는 라이브러리에서 제공하는 사전 훈련된 가중치와 함께 작동하는 PyTorch 모델([torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)), Keras 모델([tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)), JAX/Flax 모델([flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html))일 수 있습니다.
-**구성 클래스**는 모델을 구축하는 데 필요한 하이퍼파라미터(예: 레이어 수 및 은닉 크기)를 저장합니다. 구성 클래스를 직접 인스턴스화할 필요는 없습니다. 특히, 수정 없이 고 사전 학습된 모델을 사용하는 경우 모델을 생성하면 모델의 일부인 구성을 자동으로 인스턴스화됩니다.
-**구성 클래스**는 모델을 구축하는 데 필요한 하이퍼파라미터(예: 레이어 수 및 은닉 크기)를 저장합니다. 구성 클래스를 직접 인스턴스화할 필요는 없습니다. 특히, 수정 없이 고 사전 학습된 모델을 사용하는 경우 모델을 생성하면 모델의 일부인 구성을 자동으로 인스턴스화됩니다.
-**전처리 클래스**는 원시 데이터를 모델이 수용하는 형식으로 변환합니다. [Tokenizer](main_classes/tokenizer)는 각 모델의 어휘를 저장하고, 문자열을 토큰 임베딩 인덱스 리스트로 인코딩하고 디코딩하기 위한 메소드를 제공합니다. [Image processors](main_classes/image_processor)는 비전 입력을 전처리하고, [feature extractors](main_classes/feature_extractor)는 오디오 입력을 전처리하며, [processor](main_classes/processors)는 멀티모달 입력을 처리합니다.
-**전처리 클래스**는 원시 데이터를 모델이 수용하는 형식으로 변환합니다. [Tokenizer](main_classes/tokenizer)는 각 모델의 어휘를 저장하고, 문자열을 토큰 임베딩 인덱스 리스트로 인코딩하고 디코딩하기 위한 메소드를 제공합니다. [Image processors](main_classes/image_processor)는 비전 입력을 전처리하고, [feature extractors](main_classes/feature_extractor)는 오디오 입력을 전처리하며, [processor](main_classes/processors)는 멀티모달 입력을 처리합니다.
@@ -109,7 +109,7 @@ Você pode também salvar seu arquivo de configurações como um dicionário ou
...
@@ -109,7 +109,7 @@ Você pode também salvar seu arquivo de configurações como um dicionário ou
## Modelo
## Modelo
O próximo passo é criar um [model](main_classes/models). O modelo - também vagamente referido como arquitetura - define o que cada camada está fazendo e quais operações estão acontecendo. Atributos como `num_hidden_layers` das configurações são utilizados para definir a arquitetura. Todo modelo compartilha a classe base [`PreTrainedModel`] e alguns métodos em comum como redimensionar o tamanho dos embeddings de entrada e podar as 'self-attention heads'. Além disso, todos os modelos também são subclasses de [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) ou [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module). Isso significa que os modelos são compatíveis com cada respectivo uso de framework.
O próximo passo é criar um [model](main_classes/models). O modelo - também vagamente referido como arquitetura - define o que cada camada está fazendo e quais operações estão acontecendo. Atributos como `num_hidden_layers` das configurações são utilizados para definir a arquitetura. Todo modelo compartilha a classe base [`PreTrainedModel`] e alguns métodos em comum como redimensionar o tamanho dos embeddings de entrada e podar as 'self-attention heads'. Além disso, todos os modelos também são subclasses de [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) ou [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html). Isso significa que os modelos são compatíveis com cada respectivo uso de framework.