Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
9bd30f7c
Unverified
Commit
9bd30f7c
authored
Nov 01, 2020
by
Patrick von Platen
Committed by
GitHub
Nov 01, 2020
Browse files
[Seq2SeqTrainer] Move import to init to make file self-contained (#8194)
* boom boom * reverse order
parent
1f12934d
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
12 deletions
+13
-12
examples/seq2seq/seq2seq_trainer.py
examples/seq2seq/seq2seq_trainer.py
+13
-12
No files found.
examples/seq2seq/seq2seq_trainer.py
View file @
9bd30f7c
...
...
@@ -20,12 +20,6 @@ from transformers.optimization import (
from
transformers.trainer_pt_utils
import
get_tpu_sampler
try
:
from
.utils
import
label_smoothed_nll_loss
except
ImportError
:
from
utils
import
label_smoothed_nll_loss
logger
=
logging
.
get_logger
(
__name__
)
arg_to_scheduler
=
{
...
...
@@ -64,6 +58,17 @@ class Seq2SeqTrainer(Trainer):
f
"The `config.pad_token_id` is `None`. Using `config.eos_token_id` =
{
self
.
config
.
eos_token_id
}
for padding.."
)
if
self
.
args
.
label_smoothing
==
0
:
self
.
loss_fn
=
torch
.
nn
.
CrossEntropyLoss
(
ignore_index
=
self
.
config
.
pad_token_id
)
else
:
# dynamically import label_smoothed_nll_loss
try
:
from
.utils
import
label_smoothed_nll_loss
except
ImportError
:
from
utils
import
label_smoothed_nll_loss
self
.
loss_fn
=
label_smoothed_nll_loss
def
create_optimizer_and_scheduler
(
self
,
num_training_steps
:
int
):
"""
Setup the optimizer and the learning rate scheduler.
...
...
@@ -135,9 +140,7 @@ class Seq2SeqTrainer(Trainer):
if
self
.
data_args
is
not
None
and
self
.
data_args
.
ignore_pad_token_for_loss
:
# force training to ignore pad token
logits
=
model
(
**
inputs
,
use_cache
=
False
)[
0
]
loss_fct
=
torch
.
nn
.
CrossEntropyLoss
(
ignore_index
=
self
.
config
.
pad_token_id
)
loss
=
loss_fct
(
logits
.
view
(
-
1
,
logits
.
shape
[
-
1
]),
labels
.
view
(
-
1
))
loss
=
self
.
loss_fn
(
logits
.
view
(
-
1
,
logits
.
shape
[
-
1
]),
labels
.
view
(
-
1
))
else
:
# compute usual loss via models
loss
,
logits
=
model
(
**
inputs
,
labels
=
labels
,
use_cache
=
False
)[:
2
]
...
...
@@ -145,9 +148,7 @@ class Seq2SeqTrainer(Trainer):
# compute label smoothed loss
logits
=
model
(
**
inputs
,
use_cache
=
False
)[
0
]
lprobs
=
torch
.
nn
.
functional
.
log_softmax
(
logits
,
dim
=-
1
)
loss
,
_
=
label_smoothed_nll_loss
(
lprobs
,
labels
,
self
.
args
.
label_smoothing
,
ignore_index
=
self
.
config
.
pad_token_id
)
loss
,
_
=
self
.
loss_fn
(
lprobs
,
labels
,
self
.
args
.
label_smoothing
,
ignore_index
=
self
.
config
.
pad_token_id
)
return
loss
,
logits
def
compute_loss
(
self
,
model
,
inputs
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment