Unverified Commit 99a27711 authored by novice's avatar novice Committed by GitHub
Browse files

Add YOSO (#15091)



* Add cookiecutter files

* Add cuda kernels and cpp files

* Update modeling_yoso.py

* Add .h files

* Update configuration_yoso.py

* Updates

* Remove tokenizer

* Code quality

* Update modeling_yoso.py

* Update modeling_yoso.py

* Fix failing test

* Update modeling_yoso.py

* Fix code quality

* Apply suggestions from code review
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review and fix integration tests

* Update src/transformers/models/yoso/modeling_yoso.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* Apply suggestions from code review

* Fix copied from statement

* Fix docstring

* Fix code quality

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions and fix mask

* Apply suggestions from code review

* Fix code quality

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix docstrings

* Fix code quality

* Remove trailing whitespace

* Update yoso.mdx

* Move kernel loading to YosoEncoder

* make style

* Apply suggestions from code review
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/yoso/modeling_yoso.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add short summary to docs

* Update docs/source/model_doc/yoso.mdx
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update yoso.mdx

* Update docs/source/model_doc/yoso.mdx
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Remove CausalLM model and add copied from

* Remove autoregressive code

* Remove unused imports

* add copied from for embeddings

* Fix code quality

* Update docs/source/model_doc/yoso.mdx
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestion from code review
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 6292532f
__global__ void fast_hash_ver1_cuda_kernel(
int *mask, // [batch_size, num_vector]
float *vector, // [batch_size, num_vector, vector_dim]
int *Dmat, // [3, num_part, vector_dim]
int *hash_code, // [batch_size, num_vector, num_hash_f]
int batch_size,
int num_vector,
int vector_dim,
int num_part,
int num_hash_f,
int hash_code_len
);
__global__ void lsh_cumulation_ver1_step1_cuda_kernel(
int *key_mask, // [batch_size, num_key]
int *key_hash_code, // [batch_size, num_key, num_hash_f]
float *value, // [batch_size, num_key, value_dim]
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, value_dim]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_key,
int value_dim,
int offset_warp
);
__global__ void lsh_cumulation_ver1_step2_cuda_kernel(
int *query_mask, // [batch_size, num_query]
int *query_hash_code, // [batch_size, num_query, num_hash_f]
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, value_dim]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_query,
int value_dim,
int offset_warp
);
__global__ void lsh_weighted_cumulation_ver1_step1_cuda_kernel(
int *key_mask, // [batch_size, num_key]
int *key_hash_code, // [batch_size, num_key, num_hash_f]
float *key_weight, // [batch_size, num_key, weight_dim]
float *value, // [batch_size, num_key, value_dim]
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_key,
int value_dim,
int weight_dim,
int offset_warp,
int weight_idx
);
__global__ void lsh_weighted_cumulation_ver1_step2_cuda_kernel(
int *query_mask, // [batch_size, num_query]
int *query_hash_code, // [batch_size, num_query, num_hash_f]
float *query_weight, // [batch_size, num_query, weight_dim]
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_query,
int value_dim,
int weight_dim,
int offset_warp,
int weight_idx
);
__global__ void count_sort_step1_cuda_kernel(
int *key_mask, // [batch_size, num_key]
int *key_hash_code, // [batch_size, num_key, num_hash_f]
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_key
);
__global__ void count_sort_step2_cuda_kernel(
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
int batch_size,
int num_hash_f,
int hashtable_capacity
);
__global__ void count_sort_step3_cuda_kernel(
int *key_mask, // [batch_size, num_key]
int *key_hash_code, // [batch_size, num_key, num_hash_f]
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_key
);
__global__ void extract_query_info_cuda_kernel(
int *query_mask, // [batch_size, num_query]
int *query_hash_code, // [batch_size, num_query, num_hash_f]
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
int *query_info, // [batch_size, num_query, 2, num_hash_f]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_query
);
__global__ void lsh_weighted_cumulation_ver2_step2_cuda_kernel(
int *query_mask, // [batch_size, num_query]
int *query_info, // [batch_size, num_query, 2, num_hash_f]
int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
float *query_weight, // [batch_size, num_query, weight_dim]
float *key_weight, // [batch_size, num_key, weight_dim]
float *value, // [batch_size, num_key, value_dim]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int num_query,
int num_key,
int value_dim,
int weight_dim
);
__global__ void lsh_weighted_cumulation_ver3_step2_cuda_kernel(
int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
int *key_mask, // [batch_size, num_key]
int *key_info, // [batch_size, num_key, 2, num_hash_f]
float *query_weight, // [batch_size, num_query, weight_dim]
float *key_weight, // [batch_size, num_key, weight_dim]
float *value, // [batch_size, num_key, value_dim]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int num_query,
int num_key,
int value_dim,
int weight_dim
);
__global__ void lsh_weighted_cumulation_ver4_step2_cuda_kernel(
int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
int *key_mask, // [batch_size, num_key]
int *key_info, // [batch_size, num_key, 2, num_hash_f]
float *query_weight, // [batch_size, num_query, weight_dim]
float *key_weight, // [batch_size, num_key, weight_dim]
float *value, // [batch_size, num_key, value_dim]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int num_query,
int num_key,
int value_dim,
int weight_dim
);
#include <torch/extension.h>
#include <ATen/ATen.h>
#include "fast_lsh_cumulation.h"
#include "common_cuda.h"
#include <vector>
std::vector<at::Tensor> fast_hash(
at::Tensor query_mask,
at::Tensor query_vector,
at::Tensor key_mask,
at::Tensor key_vector,
int num_hash_f,
int hash_code_len,
bool use_cuda,
int version
) {
return fast_hash_ver1_kernel(
query_mask,
query_vector,
key_mask,
key_vector,
num_hash_f,
hash_code_len,
use_cuda
);
}
at::Tensor lsh_cumulation(
at::Tensor query_mask, // [batch_size, num_query]
at::Tensor query_hash_code, // [batch_size, num_query, num_hash_f]
at::Tensor key_mask, // [batch_size, num_key]
at::Tensor key_hash_code, // [batch_size, num_key, num_hash_f]
at::Tensor value, // [batch_size, num_key, value_dim]
int hashtable_capacity,
bool use_cuda,
int version
) {
return lsh_cumulation_ver1_kernel(
query_mask,
query_hash_code,
key_mask,
key_hash_code,
value,
hashtable_capacity,
use_cuda
);
}
at::Tensor lsh_weighted_cumulation(
at::Tensor query_mask, // [batch_size, num_query]
at::Tensor query_hash_code, // [batch_size, num_query, num_hash_f]
at::Tensor query_weight, // [batch_size, num_query, weight_dim]
at::Tensor key_mask, // [batch_size, num_key]
at::Tensor key_hash_code, // [batch_size, num_key, num_hash_f]
at::Tensor key_weight, // [batch_size, num_key, weight_dim]
at::Tensor value, // [batch_size, num_key, value_dim]
int hashtable_capacity,
bool use_cuda,
int version
) {
if (version == 1) {
return lsh_weighted_cumulation_ver1_kernel(
query_mask,
query_hash_code,
query_weight,
key_mask,
key_hash_code,
key_weight,
value,
hashtable_capacity,
use_cuda
);
} else if (version == 2) {
return lsh_weighted_cumulation_ver2_kernel(
query_mask,
query_hash_code,
query_weight,
key_mask,
key_hash_code,
key_weight,
value,
hashtable_capacity,
use_cuda
);
} else if (version == 3) {
return lsh_weighted_cumulation_ver3_kernel(
query_mask,
query_hash_code,
query_weight,
key_mask,
key_hash_code,
key_weight,
value,
hashtable_capacity,
use_cuda
);
} else if (version == 4) {
return lsh_weighted_cumulation_ver4_kernel(
query_mask,
query_hash_code,
query_weight,
key_mask,
key_hash_code,
key_weight,
value,
hashtable_capacity,
use_cuda
);
} else {
return lsh_weighted_cumulation_ver3_kernel(
query_mask,
query_hash_code,
query_weight,
key_mask,
key_hash_code,
key_weight,
value,
hashtable_capacity,
use_cuda
);
}
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("fast_hash", &fast_hash, "Fast Hash (CUDA)");
m.def("lsh_cumulation", &lsh_cumulation, "LSH Cumulation (CUDA)");
m.def("lsh_weighted_cumulation", &lsh_weighted_cumulation, "LSH Weighted Cumulation (CUDA)");
}
# coding=utf-8
# Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch YOSO model."""
import math
import os
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import (
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from ...utils import logging
from .configuration_yoso import YosoConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096"
_CONFIG_FOR_DOC = "YosoConfig"
_TOKENIZER_FOR_DOC = "AutoTokenizer"
YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = [
"uw-madison/yoso-4096",
# See all YOSO models at https://huggingface.co/models?filter=yoso
]
def load_cuda_kernels():
global lsh_cumulation
try:
from torch.utils.cpp_extension import load
def append_root(files):
src_folder = os.path.dirname(os.path.realpath(__file__))
return [os.path.join(src_folder, file) for file in files]
src_files = append_root(
["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"]
)
load("fast_lsh_cumulation", src_files, verbose=True)
import fast_lsh_cumulation as lsh_cumulation
return True
except Exception:
lsh_cumulation = None
return False
def to_contiguous(input_tensors):
if isinstance(input_tensors, list):
out = []
for tensor in input_tensors:
if not tensor.is_contiguous():
tensor = tensor.contiguous()
out.append(tensor)
return out
else:
if not input_tensors.is_contiguous():
input_tensors = input_tensors.contiguous()
return input_tensors
def normalize(input_tensors):
if type(input_tensors) is list:
out = []
for tensor in input_tensors:
out.append(nn.functional.normalize(tensor, p=2, dim=-1))
return out
else:
return nn.functional.normalize(input_tensors, p=2, dim=-1)
def hashing(query, key, num_hash, hash_len):
if len(query.size()) != 3:
raise ValueError("Query has incorrect size.")
if len(key.size()) != 3:
raise ValueError("Key has incorrect size.")
rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device)
raise_pow = 2 ** torch.arange(hash_len, device=query.device)
query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len)
key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len)
query_binary = (query_projection > 0).int()
key_binary = (key_projection > 0).int()
query_hash = torch.sum(query_binary * raise_pow, dim=-1)
query_hash = torch.sum(key_binary * raise_pow, dim=-1)
return query_hash.int(), query_hash.int()
class YosoCumulation(torch.autograd.Function):
@staticmethod
def forward(ctx, query_mask, key_mask, query, key, value, config):
hash_code_len = config["hash_code_len"]
expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
cumulation_value = torch.matmul(expectation, value)
ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value)
ctx.config = config
return cumulation_value
@staticmethod
def backward(ctx, grad):
grad = to_contiguous(grad)
query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors
config = ctx.config
hash_code_len = config["hash_code_len"]
weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
return None, None, grad_query, grad_key, grad_value, None
class YosoLSHCumulation(torch.autograd.Function):
@staticmethod
def forward(ctx, query_mask, key_mask, query, key, value, config):
if query_mask.size(0) != key_mask.size(0):
raise ValueError("Query mask and Key mask differ in sizes in dimension 0")
if query_mask.size(0) != query.size(0):
raise ValueError("Query mask and Query differ in sizes in dimension 0")
if query_mask.size(0) != key.size(0):
raise ValueError("Query mask and Key differ in sizes in dimension 0")
if query_mask.size(0) != value.size(0):
raise ValueError("Query mask and Value mask differ in sizes in dimension 0")
if key.size(1) != value.size(1):
raise ValueError("Key and Value differ in sizes in dimension 1")
if query.size(2) != key.size(2):
raise ValueError("Query and Key differ in sizes in dimension 2")
query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value])
use_cuda = query_mask.is_cuda
num_hash = config["num_hash"]
hash_code_len = config["hash_code_len"]
hashtable_capacity = int(2 ** hash_code_len)
if config["use_fast_hash"]:
query_hash_code, key_hash_code = lsh_cumulation.fast_hash(
query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1
)
else:
query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len)
cumulation_value = lsh_cumulation.lsh_cumulation(
query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1
)
ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value)
ctx.config = config
return cumulation_value
@staticmethod
def backward(ctx, grad):
grad = to_contiguous(grad)
query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors
config = ctx.config
use_cuda = grad.is_cuda
hash_code_len = config["hash_code_len"]
hashtable_capacity = int(2 ** hash_code_len)
if config["lsh_backward"]:
grad_value = lsh_cumulation.lsh_cumulation(
key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1
)
grad_query = lsh_cumulation.lsh_weighted_cumulation(
query_mask,
query_hash_code,
grad,
key_mask,
key_hash_code,
value,
(hash_code_len / 2) * key,
hashtable_capacity,
use_cuda,
4,
)
grad_key = lsh_cumulation.lsh_weighted_cumulation(
key_mask,
key_hash_code,
value,
query_mask,
query_hash_code,
grad,
(hash_code_len / 2) * query,
hashtable_capacity,
use_cuda,
4,
)
else:
expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len
expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :]
weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation
grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key)
grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query)
grad_value = torch.matmul(expectation.transpose(-1, -2), grad)
return None, None, grad_query, grad_key, grad_value, None
# Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings
class YosoEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if version.parse(torch.__version__) > version.parse("1.6.0"):
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class YosoSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = (
position_embedding_type if position_embedding_type is not None else config.position_embedding_type
)
self.use_expectation = config.use_expectation
self.hash_code_len = config.hash_code_len
self.use_conv = config.conv_window is not None
self.use_fast_hash = config.use_fast_hash
self.num_hash = config.num_hash
self.lsh_backward = config.lsh_backward
self.lsh_config = {
"hash_code_len": self.hash_code_len,
"use_fast_hash": self.use_fast_hash,
"num_hash": self.num_hash,
"lsh_backward": self.lsh_backward,
}
if config.conv_window is not None:
self.conv = nn.Conv2d(
in_channels=config.num_attention_heads,
out_channels=config.num_attention_heads,
kernel_size=(config.conv_window, 1),
padding=(config.conv_window // 2, 0),
bias=False,
groups=config.num_attention_heads,
)
def transpose_for_scores(self, layer):
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
layer = layer.view(*new_layer_shape)
return layer.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.use_conv:
conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None])
batch_size, num_heads, seq_len, head_dim = query_layer.size()
query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim)
key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim)
value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim)
# revert changes made by get_extended_attention_mask
attention_mask = 1.0 + attention_mask / 10000.0
attention_mask = (
attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int()
)
# The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs
# smaller than this are padded with zeros.
gpu_warp_size = 32
if (not self.use_expectation) and head_dim < gpu_warp_size:
pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim
query_layer = torch.cat(
[
query_layer,
torch.zeros(pad_size, device=query_layer.device),
],
dim=-1,
)
key_layer = torch.cat(
[
key_layer,
torch.zeros(pad_size, device=key_layer.device),
],
dim=-1,
)
value_layer = torch.cat(
[
value_layer,
torch.zeros(pad_size, device=value_layer.device),
],
dim=-1,
)
if self.use_expectation or self.training:
query_layer, key_layer = normalize([query_layer, key_layer])
if self.use_expectation:
context_layer = YosoCumulation.apply(
attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
)
else:
context_layer = YosoLSHCumulation.apply(
attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config
)
if (not self.use_expectation) and head_dim < gpu_warp_size:
context_layer = context_layer[:, :, :head_dim]
context_layer = normalize(context_layer)
context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim)
if self.use_conv:
context_layer += conv_value_layer
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, context_layer) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class YosoSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class YosoAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = YosoSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_outputs = self.self(hidden_states, attention_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class YosoIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class YosoOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class YosoLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = YosoAttention(config)
self.add_cross_attention = config.add_cross_attention
self.intermediate = YosoIntermediate(config)
self.output = YosoOutput(config)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class YosoEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
class YosoPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso
class YosoLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = YosoPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso
class YosoOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = YosoLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class YosoPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = YosoConfig
base_model_prefix = "yoso"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, YosoEncoder):
module.gradient_checkpointing = value
YOSO_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`YosoConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
YOSO_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare YOSO Model transformer outputting raw hidden-states without any specific head on top.",
YOSO_START_DOCSTRING,
)
class YosoModel(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = YosoEmbeddings(config)
self.encoder = YosoEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""YOSO Model with a `language modeling` head on top.""", YOSO_START_DOCSTRING)
class YosoForMaskedLM(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.yoso = YosoModel(config)
self.cls = YosoOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class YosoClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks.""",
YOSO_START_DOCSTRING,
)
class YosoForSequenceClassification(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.yoso = YosoModel(config)
self.classifier = YosoClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""YOSO Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
YOSO_START_DOCSTRING,
)
class YosoForMultipleChoice(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.yoso = YosoModel(config)
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""YOSO Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
YOSO_START_DOCSTRING,
)
class YosoForTokenClassification(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.yoso = YosoModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""YOSO Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
YOSO_START_DOCSTRING,
)
class YosoForQuestionAnswering(YosoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.yoso = YosoModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.yoso(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
...@@ -4060,6 +4060,65 @@ def load_tf_weights_in_xlnet(*args, **kwargs): ...@@ -4060,6 +4060,65 @@ def load_tf_weights_in_xlnet(*args, **kwargs):
requires_backends(load_tf_weights_in_xlnet, ["torch"]) requires_backends(load_tf_weights_in_xlnet, ["torch"])
YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = None
class YosoForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Adafactor(metaclass=DummyObject): class Adafactor(metaclass=DummyObject):
_backends = ["torch"] _backends = ["torch"]
......
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch YOSO model. """
import unittest
from tests.test_modeling_common import floats_tensor
from transformers import YosoConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
YosoForMaskedLM,
YosoForMultipleChoice,
YosoForQuestionAnswering,
YosoForSequenceClassification,
YosoForTokenClassification,
YosoModel,
)
from transformers.models.yoso.modeling_yoso import YOSO_PRETRAINED_MODEL_ARCHIVE_LIST
class YosoModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return YosoConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = YosoModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = YosoModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = YosoForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = YosoForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = YosoForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = YosoForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = YosoForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class YosoModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
YosoModel,
YosoForMaskedLM,
YosoForMultipleChoice,
YosoForQuestionAnswering,
YosoForSequenceClassification,
YosoForTokenClassification,
)
if is_torch_available()
else ()
)
test_pruning = False
test_headmasking = False
test_torchscript = False
all_generative_model_classes = ()
def setUp(self):
self.model_tester = YosoModelTester(self)
self.config_tester = ConfigTester(self, config_class=YosoConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in YOSO_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = YosoModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_attention_outputs(self):
return
@require_torch
class YosoModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = YosoModel.from_pretrained("uw-madison/yoso-4096")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size((1, 6, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-0.0611, 0.1242, 0.0840], [0.0280, -0.0048, 0.1125], [0.0106, 0.0226, 0.0751]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@slow
def test_inference_masked_lm(self):
model = YosoForMaskedLM.from_pretrained("uw-madison/yoso-4096")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
with torch.no_grad():
output = model(input_ids)[0]
vocab_size = 50265
expected_shape = torch.Size((1, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-2.1313, -3.7285, -2.2407], [-2.7047, -3.3314, -2.6408], [0.0629, -2.5166, -0.3356]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@slow
def test_inference_masked_lm_long_input(self):
model = YosoForMaskedLM.from_pretrained("uw-madison/yoso-4096")
input_ids = torch.arange(4096).unsqueeze(0)
with torch.no_grad():
output = model(input_ids)[0]
vocab_size = 50265
expected_shape = torch.Size((1, 4096, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-2.3914, -4.3742, -5.0956], [-4.0988, -4.2384, -7.0406], [-3.1427, -3.7192, -6.6800]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment