"docs/source/vscode:/vscode.git/clone" did not exist on "33aa0af70c70d9a8205b0ff0d1d4e68807fbb173"
Unverified Commit 98020865 authored by jingyihe's avatar jingyihe Committed by GitHub
Browse files

Fixed docs for the shape of `scores` in `generate()` (#10057)

* Fixed the doc for the shape of return scores tuples in generation_utils.py.

* Fix the output shape of `scores` for `DecoderOnlyOutput`.

* style fix
parent 4e7bf94e
...@@ -64,8 +64,8 @@ class GreedySearchDecoderOnlyOutput(ModelOutput): ...@@ -64,8 +64,8 @@ class GreedySearchDecoderOnlyOutput(ModelOutput):
shorter if all batches finished early due to the :obj:`eos_token_id`. shorter if all batches finished early due to the :obj:`eos_token_id`.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``): scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. :obj:`(max_length,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of at each generation step. :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`torch.FloatTensor`
shape :obj:`(batch_size, config.vocab_size)`). with each tensor of shape :obj:`(batch_size, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`. :obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
...@@ -94,8 +94,8 @@ class GreedySearchEncoderDecoderOutput(ModelOutput): ...@@ -94,8 +94,8 @@ class GreedySearchEncoderDecoderOutput(ModelOutput):
shorter if all batches finished early due to the :obj:`eos_token_id`. shorter if all batches finished early due to the :obj:`eos_token_id`.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``): scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. :obj:`(max_length,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of at each generation step. :obj:`(max_length-1,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor
shape :obj:`(batch_size, config.vocab_size)`). of shape :obj:`(batch_size, config.vocab_size)`).
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape :obj:`(batch_size, Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape :obj:`(batch_size,
num_heads, sequence_length, sequence_length)`. num_heads, sequence_length, sequence_length)`.
...@@ -134,8 +134,8 @@ class SampleDecoderOnlyOutput(ModelOutput): ...@@ -134,8 +134,8 @@ class SampleDecoderOnlyOutput(ModelOutput):
shorter if all batches finished early due to the :obj:`eos_token_id`. shorter if all batches finished early due to the :obj:`eos_token_id`.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``): scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. :obj:`(max_length,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of at each generation step. :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`torch.FloatTensor`
shape :obj:`(batch_size*num_return_sequences, config.vocab_size)`). with each tensor of shape :obj:`(batch_size*num_return_sequences, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(num_return_sequences*batch_size, num_heads, generated_length, :obj:`torch.FloatTensor` of shape :obj:`(num_return_sequences*batch_size, num_heads, generated_length,
...@@ -165,8 +165,8 @@ class SampleEncoderDecoderOutput(ModelOutput): ...@@ -165,8 +165,8 @@ class SampleEncoderDecoderOutput(ModelOutput):
shorter if all batches finished early due to the :obj:`eos_token_id`. shorter if all batches finished early due to the :obj:`eos_token_id`.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``): scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. :obj:`(max_length,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of at each generation step. :obj:`(max_length-1,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor
shape :obj:`(batch_size*num_return_sequences, config.vocab_size)`). of shape :obj:`(batch_size*num_return_sequences, config.vocab_size)`).
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape
:obj:`(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`. :obj:`(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`.
...@@ -208,8 +208,8 @@ class BeamSearchDecoderOnlyOutput(ModelOutput): ...@@ -208,8 +208,8 @@ class BeamSearchDecoderOnlyOutput(ModelOutput):
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``): scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
. :obj:`(max_length,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of shape . :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of
:obj:`(batch_size*num_beams*num_return_sequences, config.vocab_size)`). shape :obj:`(batch_size*num_beams*num_return_sequences, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length, :obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length,
...@@ -243,7 +243,7 @@ class BeamSearchEncoderDecoderOutput(ModelOutput): ...@@ -243,7 +243,7 @@ class BeamSearchEncoderDecoderOutput(ModelOutput):
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``): scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
. :obj:`(max_length,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of shape . :obj:`(max_length-1,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of shape
:obj:`(batch_size*num_beams, config.vocab_size)`). :obj:`(batch_size*num_beams, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
...@@ -289,8 +289,8 @@ class BeamSampleDecoderOnlyOutput(ModelOutput): ...@@ -289,8 +289,8 @@ class BeamSampleDecoderOnlyOutput(ModelOutput):
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``): scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
. :obj:`(max_length,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of shape . :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of
:obj:`(batch_size*num_beams*num_return_sequences, config.vocab_size)`). shape :obj:`(batch_size*num_beams*num_return_sequences, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length, :obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length,
...@@ -323,7 +323,7 @@ class BeamSampleEncoderDecoderOutput(ModelOutput): ...@@ -323,7 +323,7 @@ class BeamSampleEncoderDecoderOutput(ModelOutput):
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``): scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
. :obj:`(max_length,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of shape . :obj:`(max_length-1,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of shape
:obj:`(batch_size*num_beams, config.vocab_size)`). :obj:`(batch_size*num_beams, config.vocab_size)`).
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape :obj:`(batch_size, Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape :obj:`(batch_size,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment