Unverified Commit 979ca24e authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

[Fix doc example] Wrong checkpoint name (#15079)



* fix doc example - MarianForCausalLM example

* try to keep copies

* fix copies

* fix more similar doc examples

* fix more

* fix style
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent 7b3d4df4
......@@ -1386,7 +1386,7 @@ class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot, facebook/bart-large->facebook/blenderbot-400M-distill
class BlenderbotForCausalLM(BlenderbotPreTrainedModel):
def __init__(self, config):
config = copy.deepcopy(config)
......@@ -1508,8 +1508,10 @@ class BlenderbotForCausalLM(BlenderbotPreTrainedModel):
```python
>>> from transformers import BlenderbotTokenizer, BlenderbotForCausalLM
>>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/bart-large")
>>> model = BlenderbotForCausalLM.from_pretrained("facebook/bart-large", add_cross_attention=False)
>>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> model = BlenderbotForCausalLM.from_pretrained(
... "facebook/blenderbot-400M-distill", add_cross_attention=False
... )
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
......
......@@ -1357,7 +1357,7 @@ class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall, facebook/bart-large->facebook/blenderbot_small-90M
class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel):
def __init__(self, config):
config = copy.deepcopy(config)
......@@ -1479,8 +1479,10 @@ class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel):
```python
>>> from transformers import BlenderbotSmallTokenizer, BlenderbotSmallForCausalLM
>>> tokenizer = BlenderbotSmallTokenizer.from_pretrained("facebook/bart-large")
>>> model = BlenderbotSmallForCausalLM.from_pretrained("facebook/bart-large", add_cross_attention=False)
>>> tokenizer = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> model = BlenderbotSmallForCausalLM.from_pretrained(
... "facebook/blenderbot_small-90M", add_cross_attention=False
... )
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
......
......@@ -1397,7 +1397,7 @@ class MarianDecoderWrapper(MarianPreTrainedModel):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Marian
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Marian, facebook/bart-large->Helsinki-NLP/opus-mt-fr-en
class MarianForCausalLM(MarianPreTrainedModel):
def __init__(self, config):
config = copy.deepcopy(config)
......@@ -1519,8 +1519,8 @@ class MarianForCausalLM(MarianPreTrainedModel):
```python
>>> from transformers import MarianTokenizer, MarianForCausalLM
>>> tokenizer = MarianTokenizer.from_pretrained("facebook/bart-large")
>>> model = MarianForCausalLM.from_pretrained("facebook/bart-large", add_cross_attention=False)
>>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-fr-en")
>>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-fr-en", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
......
......@@ -1662,7 +1662,7 @@ class MBartDecoderWrapper(MBartPreTrainedModel):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart, facebook/bart-large->facebook/mbart-large-cc25
class MBartForCausalLM(MBartPreTrainedModel):
def __init__(self, config):
config = copy.deepcopy(config)
......@@ -1784,8 +1784,8 @@ class MBartForCausalLM(MBartPreTrainedModel):
```python
>>> from transformers import MBartTokenizer, MBartForCausalLM
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/bart-large")
>>> model = MBartForCausalLM.from_pretrained("facebook/bart-large", add_cross_attention=False)
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
......
......@@ -1537,7 +1537,7 @@ class PegasusForCausalLM(PegasusPreTrainedModel):
self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM.forward with Bart->Pegasus
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM.forward with Bart->Pegasus, facebook/bart-large->google/pegasus-large
def forward(
self,
input_ids=None,
......@@ -1627,8 +1627,8 @@ class PegasusForCausalLM(PegasusPreTrainedModel):
```python
>>> from transformers import PegasusTokenizer, PegasusForCausalLM
>>> tokenizer = PegasusTokenizer.from_pretrained("facebook/bart-large")
>>> model = PegasusForCausalLM.from_pretrained("facebook/bart-large", add_cross_attention=False)
>>> tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-large")
>>> model = PegasusForCausalLM.from_pretrained("google/pegasus-large", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment