Unverified Commit 956c4c4e authored by Sam Shleifer's avatar Sam Shleifer Committed by GitHub
Browse files

[gpu slow tests] fix mbart-large-enro gpu tests (#4472)

parent 48c3a70b
......@@ -231,7 +231,7 @@ class BartTranslationTests(unittest.TestCase):
"""Only load the model if needed."""
if self._model is None:
model = BartForConditionalGeneration.from_pretrained("mbart-large-en-ro")
self._model = model
self._model = model.to(torch_device)
return self._model
@slow
......@@ -257,10 +257,7 @@ class BartTranslationTests(unittest.TestCase):
)
}
translated_tokens = model.generate(input_ids=inputs["input_ids"].to(torch_device), num_beams=5,)
decoded = [
self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for g in translated_tokens
]
decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
self.assertEqual(expected_translation_romanian, decoded[0])
def test_mbart_enro_config(self):
......@@ -576,11 +573,13 @@ class BartModelIntegrationTests(unittest.TestCase):
PGE_ARTICLE = """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
EXPECTED_SUMMARY = "California's largest power company has begun shutting off power to tens of thousands of homes and businesses in the state."
dct = tok.batch_encode_plus([PGE_ARTICLE], max_length=1024, pad_to_max_length=True, return_tensors="pt",)
dct = tok.batch_encode_plus([PGE_ARTICLE], max_length=1024, pad_to_max_length=True, return_tensors="pt",).to(
torch_device
)
hypotheses_batch = model.generate(
input_ids=dct["input_ids"].to(torch_device),
attention_mask=dct["attention_mask"].to(torch_device),
input_ids=dct["input_ids"],
attention_mask=dct["attention_mask"],
num_beams=2,
max_length=62,
min_length=11,
......@@ -590,9 +589,7 @@ class BartModelIntegrationTests(unittest.TestCase):
decoder_start_token_id=model.config.eos_token_id,
)
decoded = [
tok.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in hypotheses_batch
]
decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True,)
self.assertEqual(EXPECTED_SUMMARY, decoded[0])
def test_xsum_config_generation_params(self):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment