"docs/source/en/main_classes/processors.md" did not exist on "b8112eddecfd524038e3c10970c06a444a32aa9d"
Unverified Commit 9342c8fb authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Deprecate models (#24787)



* Deprecate some models

* Fix imports

* Fix inits too

* Remove tests

* Add deprecated banner to documentation

* Remove from init

* Fix auto classes

* Style

* Remote upgrade strategy 1

* Remove site package cache

* Revert this part

* Fix typo...

* Update utils

* Update docs/source/en/model_doc/bort.md
Co-authored-by: default avatarLysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* With all files saved

---------
Co-authored-by: default avatarLysandre Debut <lysandre.debut@reseau.eseo.fr>
parent 717dadc6
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import random
import unittest
import numpy as np
from transformers import MCTCTFeatureExtractor
from transformers.testing_utils import require_torch
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
global_rng = random.Random()
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for _batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
class MCTCTFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=24,
num_mel_bins=24,
padding_value=0.0,
sampling_rate=16_000,
return_attention_mask=True,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.feature_size = feature_size
self.num_mel_bins = num_mel_bins
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
class MCTCTFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = MCTCTFeatureExtractor
def setUp(self):
self.feat_extract_tester = MCTCTFeatureExtractionTester(self)
def _check_zero_mean_unit_variance(self, input_vector):
self.assertTrue(np.all(np.mean(input_vector) < 1e-3))
self.assertTrue(np.all(np.abs(np.var(input_vector) - 1) < 1e-3))
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_cepstral_mean_and_variance_normalization(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
paddings = ["longest", "max_length", "do_not_pad"]
max_lengths = [None, 16, None]
for max_length, padding in zip(max_lengths, paddings):
inputs = feature_extractor(
speech_inputs,
padding=padding,
max_length=max_length,
return_attention_mask=True,
truncation=max_length is not None, # reference to #16419
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = [np.sum(x) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def test_cepstral_mean_and_variance_normalization_np(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
paddings = ["longest", "max_length", "do_not_pad"]
max_lengths = [None, 16, None]
for max_length, padding in zip(max_lengths, paddings):
inputs = feature_extractor(
speech_inputs,
max_length=max_length,
padding=padding,
return_tensors="np",
return_attention_mask=True,
truncation=max_length is not None,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = [np.sum(x) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def test_cepstral_mean_and_variance_normalization_trunc_max_length(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
inputs = feature_extractor(
speech_inputs,
padding="max_length",
max_length=4,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1])
self._check_zero_mean_unit_variance(input_features[2])
def test_cepstral_mean_and_variance_normalization_trunc_longest(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
inputs = feature_extractor(
speech_inputs,
padding="longest",
max_length=4,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape, (3, 4, 24))
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
inputs = feature_extractor(
speech_inputs,
padding="longest",
max_length=16,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape, (3, 16, 24))
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def test_different_window(self):
import torch
init_dict = self.feat_extract_tester.prepare_feat_extract_dict()
init_dict["win_function"] = "hann_window"
feature_extractor = self.feature_extraction_class(**init_dict)
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_integration(self):
# fmt: off
expected = np.array([
[
1.1280, 1.1319, 1.2744, 1.4369, 1.4328, 1.3671, 1.2889, 1.3046,
1.4419, 0.8387, 0.2995, 0.0404, 0.1068, 0.0472, 0.3728, 1.3356,
1.4491, 0.4770, 0.3997, 0.2776, 0.3184, -0.1243, -0.1170, -0.0828
],
[
1.0826, 1.0565, 1.2110, 1.3886, 1.3416, 1.2009, 1.1894, 1.2707,
1.5153, 0.7005, 0.4916, 0.4017, 0.3743, 0.1935, 0.4228, 1.1084,
0.9768, 0.0608, 0.2044, 0.1723, 0.0433, -0.2360, -0.2478, -0.2643
],
[
1.0590, 0.9923, 1.1185, 1.3309, 1.1971, 1.0067, 1.0080, 1.2036,
1.5397, 1.0383, 0.7672, 0.7551, 0.4878, 0.8771, 0.7565, 0.8775,
0.9042, 0.4595, 0.6157, 0.4954, 0.1857, 0.0307, 0.0199, 0.1033
],
])
# fmt: on
input_speech = self._load_datasamples(1)
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
input_features = feature_extractor(input_speech, sampling_rate=16000, return_tensors="pt").input_features
self.assertTrue(np.allclose(input_features[0, 100:103], expected, atol=1e-4))
This diff is collapsed.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from transformers import MCTCTProcessor, is_speech_available, is_torch_available
from transformers.file_utils import FEATURE_EXTRACTOR_NAME
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES, Wav2Vec2CTCTokenizer
from transformers.testing_utils import require_torch, require_torchaudio
if is_speech_available() and is_torch_available():
from transformers import MCTCTFeatureExtractor
from .test_feature_extraction_mctct import floats_list
@require_torch
@require_torchaudio
class MCTCTProcessorTest(unittest.TestCase):
def setUp(self):
vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ")
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.add_kwargs_tokens_map = {
"pad_token": "<pad>",
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
}
feature_extractor_map = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 16000,
"return_attention_mask": False,
"do_normalize": True,
}
self.tmpdirname = tempfile.mkdtemp()
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(feature_extractor_map) + "\n")
def get_tokenizer(self, **kwargs_init):
kwargs = self.add_kwargs_tokens_map.copy()
kwargs.update(kwargs_init)
return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return MCTCTFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = MCTCTProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, MCTCTFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = MCTCTProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = MCTCTProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, MCTCTFeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
self.assertListEqual(
processor.model_input_names,
feature_extractor.model_input_names,
msg="`processor` and `feature_extractor` model input names do not match",
)
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the RetriBERT tokenizer. """
import os
import unittest
from transformers import RetriBertTokenizer, RetriBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english, merge_model_tokenizer_mappings
# Copied from transformers.tests.bert.test_modeling_bert.py with Bert->RetriBert
@require_tokenizers
class RetriBertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = RetriBertTokenizer
test_slow_tokenizer = True
rust_tokenizer_class = RetriBertTokenizerFast
test_rust_tokenizer = True
space_between_special_tokens = True
from_pretrained_filter = filter_non_english
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00E9d,running"
output_text = "unwanted, running"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("UNwant\u00E9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
# With lower casing
tokenizer = self.get_tokenizer(do_lower_case=True)
rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True)
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
def test_chinese(self):
tokenizer = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"])
def test_basic_tokenizer_lower(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"])
def test_basic_tokenizer_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_default(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_no_lower(self):
tokenizer = BasicTokenizer(do_lower_case=False)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_respects_never_split_tokens(self):
tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"])
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]
)
def test_wordpiece_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
vocab = {}
for i, token in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"])
self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
def test_is_whitespace(self):
self.assertTrue(_is_whitespace(" "))
self.assertTrue(_is_whitespace("\t"))
self.assertTrue(_is_whitespace("\r"))
self.assertTrue(_is_whitespace("\n"))
self.assertTrue(_is_whitespace("\u00A0"))
self.assertFalse(_is_whitespace("A"))
self.assertFalse(_is_whitespace("-"))
def test_is_control(self):
self.assertTrue(_is_control("\u0005"))
self.assertFalse(_is_control("A"))
self.assertFalse(_is_control(" "))
self.assertFalse(_is_control("\t"))
self.assertFalse(_is_control("\r"))
def test_is_punctuation(self):
self.assertTrue(_is_punctuation("-"))
self.assertTrue(_is_punctuation("$"))
self.assertTrue(_is_punctuation("`"))
self.assertTrue(_is_punctuation("."))
self.assertFalse(_is_punctuation("A"))
self.assertFalse(_is_punctuation(" "))
def test_clean_text(self):
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]])
self.assertListEqual(
[rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]
)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("yjernite/retribert-base-uncased")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_2 + [102]
def test_offsets_with_special_characters(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
tokens = tokenizer_r.encode_plus(
sentence,
return_attention_mask=False,
return_token_type_ids=False,
return_offsets_mapping=True,
add_special_tokens=True,
)
do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False
expected_results = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])
)
self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
def test_change_tokenize_chinese_chars(self):
list_of_commun_chinese_char = ["的", "人", "有"]
text_with_chinese_char = "".join(list_of_commun_chinese_char)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
kwargs["tokenize_chinese_chars"] = True
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False)
ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False)
tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r)
tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(tokens_without_spe_char_p, list_of_commun_chinese_char)
self.assertListEqual(tokens_without_spe_char_r, list_of_commun_chinese_char)
kwargs["tokenize_chinese_chars"] = False
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False)
ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False)
tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r)
tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p)
# it is expected that only the first Chinese character is not preceded by "##".
expected_tokens = [
f"##{token}" if idx != 0 else token for idx, token in enumerate(list_of_commun_chinese_char)
]
self.assertListEqual(tokens_without_spe_char_p, expected_tokens)
self.assertListEqual(tokens_without_spe_char_r, expected_tokens)
# RetriBertModel doesn't define `get_input_embeddings` and it's forward method doesn't take only the output of the tokenizer as input
@require_torch
@slow
def test_torch_encode_plus_sent_to_model(self):
import torch
from transformers import MODEL_MAPPING, TOKENIZER_MAPPING
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
return
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
config = config_class()
if config.is_encoder_decoder or config.pad_token_id is None:
return
model = model_class(config)
# The following test is different from the common's one
self.assertGreaterEqual(model.bert_query.get_input_embeddings().weight.shape[0], len(tokenizer))
# Build sequence
first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
sequence = " ".join(first_ten_tokens)
encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
# Ensure that the BatchEncoding.to() method works.
encoded_sequence.to(model.device)
batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
# This should not fail
with torch.no_grad(): # saves some time
# The following lines are different from the common's ones
model.embed_questions(**encoded_sequence)
model.embed_questions(**batch_encoded_sequence)
This diff is collapsed.
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch TrajectoryTransformer model. """
import inspect
import unittest
import numpy as np
from transformers import TrajectoryTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import TrajectoryTransformerModel
from transformers.models.trajectory_transformer.modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class TrajectoryTransformerModelTester:
def __init__(self, parent, batch_size=13, n_embd=128, action_dim=6, observation_dim=17, is_training=True):
self.parent = parent
self.batch_size = batch_size
self.n_embd = n_embd
self.action_dim = action_dim
self.observation_dim = observation_dim
self.is_training = is_training
self.seq_length = self.action_dim + self.observation_dim + 1
def prepare_config_and_inputs(self):
trajectories = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(self.batch_size)]).to(
torch_device
)
attention_mask = random_attention_mask((self.batch_size, self.seq_length)).to(torch_device)
targets = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(self.batch_size)]).to(
torch_device
)
config = self.get_config()
return config, trajectories, attention_mask, targets
def get_config(self):
return TrajectoryTransformerConfig(
batch_size=self.batch_size,
n_embd=self.n_embd,
action_dim=self.action_dim,
observation_dim=self.observation_dim,
)
def create_and_check_model(self, config, input_dict):
model = TrajectoryTransformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(trajectories=input_dict["trajectories"], attention_mask=input_dict["attention_mask"])
result = model(
trajectories=input_dict["trajectories"],
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
)
self.parent.assertEqual(result.hidden_states[-1].shape, (self.batch_size, self.seq_length, self.n_embd))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, trajectories, attention_mask, targets) = config_and_inputs
inputs_dict = {"trajectories": trajectories, "attention_mask": attention_mask, "targets": targets}
return config, inputs_dict
@require_torch
class TrajectoryTransformerModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TrajectoryTransformerModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": TrajectoryTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
test_generate_without_input_ids = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_attention_outputs = False
test_hidden_states_output = False
test_inputs_embeds = False
test_model_common_attributes = False
test_torchscript = False
def setUp(self):
self.model_tester = TrajectoryTransformerModelTester(self)
self.config_tester = ConfigTester(self, config_class=TrajectoryTransformerConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_conditional_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["trajectories"]
self.assertListEqual(arg_names[:1], expected_arg_names)
# # Input is 'trajectories' not 'input_ids'
def test_model_main_input_name(self):
model_signature = inspect.signature(getattr(TrajectoryTransformerModel, "forward"))
# The main input is the name of the argument after `self`
observed_main_input_name = list(model_signature.parameters.keys())[1]
self.assertEqual(TrajectoryTransformerModel.main_input_name, observed_main_input_name)
def test_retain_grad_hidden_states_attentions(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = self.has_attentions
model = TrajectoryTransformerModel(config)
model.to(torch_device)
outputs = model(
trajectories=input_dict["trajectories"],
attention_mask=input_dict["attention_mask"],
targets=input_dict["targets"],
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
)
output = outputs[0]
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
attentions = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(attentions.grad)
def test_training(self):
if not self.model_tester.is_training:
return
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = TrajectoryTransformerModel(config)
model.to(torch_device)
model.train()
loss = model(
trajectories=input_dict["trajectories"],
attention_mask=input_dict["attention_mask"],
targets=input_dict["targets"],
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
).loss
loss.backward()
def test_training_gradient_checkpointing(self):
if not self.model_tester.is_training:
return
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = TrajectoryTransformerModel(config)
model.gradient_checkpointing_enable()
model.to(torch_device)
model.train()
loss = model(
trajectories=input_dict["trajectories"],
attention_mask=input_dict["attention_mask"],
targets=input_dict["targets"],
output_hidden_states=True,
output_attentions=True,
use_cache=False,
return_dict=True,
).loss
loss.backward()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@slow
def test_model_from_pretrained(self):
for model_name in TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TrajectoryTransformerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class TrajectoryTransformerModelIntegrationTest(unittest.TestCase):
@slow
def test_prediction(self):
batch_size = 1
config = TrajectoryTransformerConfig.from_pretrained("CarlCochet/trajectory-transformer-halfcheetah-medium-v2")
model = TrajectoryTransformerModel.from_pretrained(
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2", config=config
)
model.to(torch_device)
model.eval()
seq_length = model.config.action_dim + model.config.observation_dim + 1
trajectories = torch.LongTensor(
[[3, 19, 20, 22, 9, 7, 23, 10, 18, 14, 13, 4, 17, 11, 5, 6, 15, 21, 2, 8, 1, 0, 12, 16]]
).to(torch_device)
outputs = model(
trajectories=trajectories,
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
)
output = outputs.logits
expected_shape = torch.Size((batch_size, seq_length, model.config.vocab_size + 1))
expected_slice = torch.tensor(
[[[-0.7193, -0.2532, -0.0898], [1.9429, 2.0434, 2.3975], [-3.3651, -2.8744, -2.4532]]]
).to(torch_device)
output_slice = output[:, :3, :3]
self.assertEqual(output.shape, expected_shape)
self.assertTrue(torch.allclose(output_slice, expected_slice, atol=1e-4))
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Van model. """
import inspect
import math
import unittest
from transformers import VanConfig
from transformers.testing_utils import require_scipy, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_scipy_available, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_scipy_available():
from scipy import stats
if is_torch_available():
import torch
from torch import nn
from transformers import VanForImageClassification, VanModel
from transformers.models.van.modeling_van import VAN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class VanModelTester:
def __init__(
self,
parent,
batch_size=2,
image_size=224,
num_channels=3,
hidden_sizes=[16, 32, 64, 128],
depths=[1, 1, 1, 1],
is_training=True,
use_labels=True,
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.hidden_sizes = hidden_sizes
self.depths = depths
self.is_training = is_training
self.use_labels = use_labels
self.num_labels = num_labels
self.type_sequence_label_size = num_labels
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return VanConfig(
num_channels=self.num_channels,
hidden_sizes=self.hidden_sizes,
depths=self.depths,
num_labels=self.num_labels,
is_decoder=False,
)
def create_and_check_model(self, config, pixel_values, labels):
model = VanModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels):
model = VanForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class VanModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Van does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (VanModel, VanForImageClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": VanModel, "image-classification": VanForImageClassification}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = VanModelTester(self)
self.config_tester = ConfigTester(self, config_class=VanConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
@unittest.skip(reason="Van does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Van does not support input and output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@require_scipy
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, module in model.named_modules():
if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm, nn.LayerNorm)):
self.assertTrue(
torch.all(module.weight == 1),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
self.assertTrue(
torch.all(module.bias == 0),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif isinstance(module, nn.Conv2d):
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
std = math.sqrt(2.0 / fan_out)
# divide by std -> mean = 0, std = 1
data = module.weight.data.cpu().flatten().numpy() / std
test = stats.anderson(data)
self.assertTrue(test.statistic > 0.05)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_stages = len(self.model_tester.hidden_sizes)
# van has no embeddings
self.assertEqual(len(hidden_states), expected_num_stages)
# Van's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in VAN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = VanModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class VanModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained(VAN_PRETRAINED_MODEL_ARCHIVE_LIST[0])
@slow
def test_inference_image_classification_head(self):
model = VanForImageClassification.from_pretrained(VAN_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([0.1029, -0.0904, -0.6365]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
......@@ -69,10 +69,6 @@ SPECIAL_CASES_TO_ALLOW = {
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"RetriBertConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"TrajectoryTransformerConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
......@@ -106,7 +102,6 @@ SPECIAL_CASES_TO_ALLOW.update(
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"RetriBertConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
......@@ -114,11 +109,9 @@ SPECIAL_CASES_TO_ALLOW.update(
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TrajectoryTransformerConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"VanConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
......@@ -267,6 +260,9 @@ def check_config_attributes():
"""Check the arguments in `__init__` of all configuration classes are used in python files"""
configs_with_unused_attributes = {}
for _config_class in list(CONFIG_MAPPING.values()):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
config_classes_in_module = [
cls
......
......@@ -74,6 +74,9 @@ def check_config_docstrings_have_checkpoints():
configs_without_checkpoint = []
for config_class in list(CONFIG_MAPPING.values()):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
checkpoint = get_checkpoint_from_config_class(config_class)
name = config_class.__name__
......
......@@ -400,6 +400,8 @@ def check_model_list():
models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
_models = []
for model in os.listdir(models_dir):
if model == "deprecated":
continue
model_dir = os.path.join(models_dir, model)
if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
_models.append(model)
......@@ -445,6 +447,8 @@ def get_model_modules():
]
modules = []
for model in dir(transformers.models):
if model == "deprecated":
continue
# There are some magic dunder attributes in the dir, we ignore them
if not model.startswith("__"):
model_module = getattr(transformers.models, model)
......@@ -767,6 +771,8 @@ def check_objects_being_equally_in_main_init():
obj = getattr(transformers, attr)
if hasattr(obj, "__module__"):
module_path = obj.__module__
if "models.deprecated" in module_path:
continue
module_name = module_path.split(".")[-1]
module_dir = ".".join(module_path.split(".")[:-1])
if (
......
......@@ -277,9 +277,6 @@ src/transformers/models/mbart/tokenization_mbart.py
src/transformers/models/mbart/tokenization_mbart_fast.py
src/transformers/models/mbart50/tokenization_mbart50.py
src/transformers/models/mbart50/tokenization_mbart50_fast.py
src/transformers/models/mctct/configuration_mctct.py
src/transformers/models/mctct/feature_extraction_mctct.py
src/transformers/models/mctct/processing_mctct.py
src/transformers/models/megatron_bert/configuration_megatron_bert.py
src/transformers/models/mgp_str/processing_mgp_str.py
src/transformers/models/mgp_str/tokenization_mgp_str.py
......@@ -362,8 +359,6 @@ src/transformers/models/rembert/tokenization_rembert_fast.py
src/transformers/models/resnet/configuration_resnet.py
src/transformers/models/resnet/modeling_resnet.py
src/transformers/models/resnet/modeling_tf_resnet.py
src/transformers/models/retribert/tokenization_retribert.py
src/transformers/models/retribert/tokenization_retribert_fast.py
src/transformers/models/roberta/configuration_roberta.py
src/transformers/models/roberta/modeling_roberta.py
src/transformers/models/roberta/modeling_tf_roberta.py
......@@ -413,12 +408,10 @@ src/transformers/models/t5/tokenization_t5.py
src/transformers/models/t5/tokenization_t5_fast.py
src/transformers/models/table_transformer/modeling_table_transformer.py
src/transformers/models/tapas/tokenization_tapas.py
src/transformers/models/tapex/tokenization_tapex.py
src/transformers/models/time_series_transformer/configuration_time_series_transformer.py
src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
src/transformers/models/timesformer/configuration_timesformer.py
src/transformers/models/timesformer/modeling_timesformer.py
src/transformers/models/trajectory_transformer/configuration_trajectory_transformer.py
src/transformers/models/transfo_xl/configuration_transfo_xl.py
src/transformers/models/transfo_xl/tokenization_transfo_xl.py
src/transformers/models/trocr/configuration_trocr.py
......@@ -431,7 +424,6 @@ src/transformers/models/unispeech/configuration_unispeech.py
src/transformers/models/unispeech/modeling_unispeech.py
src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
src/transformers/models/upernet/modeling_upernet.py
src/transformers/models/van/modeling_van.py
src/transformers/models/videomae/feature_extraction_videomae.py
src/transformers/models/videomae/image_processing_videomae.py
src/transformers/models/videomae/modeling_videomae.py
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment