Unverified Commit 9342c8fb authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Deprecate models (#24787)



* Deprecate some models

* Fix imports

* Fix inits too

* Remove tests

* Add deprecated banner to documentation

* Remove from init

* Fix auto classes

* Style

* Remote upgrade strategy 1

* Remove site package cache

* Revert this part

* Fix typo...

* Update utils

* Update docs/source/en/model_doc/bort.md
Co-authored-by: default avatarLysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* With all files saved

---------
Co-authored-by: default avatarLysandre Debut <lysandre.debut@reseau.eseo.fr>
parent 717dadc6
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import random
import unittest
import numpy as np
from transformers import MCTCTFeatureExtractor
from transformers.testing_utils import require_torch
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
global_rng = random.Random()
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for _batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
class MCTCTFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=24,
num_mel_bins=24,
padding_value=0.0,
sampling_rate=16_000,
return_attention_mask=True,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.feature_size = feature_size
self.num_mel_bins = num_mel_bins
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
class MCTCTFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = MCTCTFeatureExtractor
def setUp(self):
self.feat_extract_tester = MCTCTFeatureExtractionTester(self)
def _check_zero_mean_unit_variance(self, input_vector):
self.assertTrue(np.all(np.mean(input_vector) < 1e-3))
self.assertTrue(np.all(np.abs(np.var(input_vector) - 1) < 1e-3))
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_cepstral_mean_and_variance_normalization(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
paddings = ["longest", "max_length", "do_not_pad"]
max_lengths = [None, 16, None]
for max_length, padding in zip(max_lengths, paddings):
inputs = feature_extractor(
speech_inputs,
padding=padding,
max_length=max_length,
return_attention_mask=True,
truncation=max_length is not None, # reference to #16419
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = [np.sum(x) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def test_cepstral_mean_and_variance_normalization_np(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
paddings = ["longest", "max_length", "do_not_pad"]
max_lengths = [None, 16, None]
for max_length, padding in zip(max_lengths, paddings):
inputs = feature_extractor(
speech_inputs,
max_length=max_length,
padding=padding,
return_tensors="np",
return_attention_mask=True,
truncation=max_length is not None,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = [np.sum(x) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def test_cepstral_mean_and_variance_normalization_trunc_max_length(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
inputs = feature_extractor(
speech_inputs,
padding="max_length",
max_length=4,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1])
self._check_zero_mean_unit_variance(input_features[2])
def test_cepstral_mean_and_variance_normalization_trunc_longest(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
inputs = feature_extractor(
speech_inputs,
padding="longest",
max_length=4,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape, (3, 4, 24))
speech_inputs = [floats_list((1, x))[0] for x in range(8000, 14000, 2000)]
inputs = feature_extractor(
speech_inputs,
padding="longest",
max_length=16,
truncation=True,
return_tensors="np",
return_attention_mask=True,
)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape, (3, 16, 24))
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def test_different_window(self):
import torch
init_dict = self.feat_extract_tester.prepare_feat_extract_dict()
init_dict["win_function"] = "hann_window"
feature_extractor = self.feature_extraction_class(**init_dict)
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_integration(self):
# fmt: off
expected = np.array([
[
1.1280, 1.1319, 1.2744, 1.4369, 1.4328, 1.3671, 1.2889, 1.3046,
1.4419, 0.8387, 0.2995, 0.0404, 0.1068, 0.0472, 0.3728, 1.3356,
1.4491, 0.4770, 0.3997, 0.2776, 0.3184, -0.1243, -0.1170, -0.0828
],
[
1.0826, 1.0565, 1.2110, 1.3886, 1.3416, 1.2009, 1.1894, 1.2707,
1.5153, 0.7005, 0.4916, 0.4017, 0.3743, 0.1935, 0.4228, 1.1084,
0.9768, 0.0608, 0.2044, 0.1723, 0.0433, -0.2360, -0.2478, -0.2643
],
[
1.0590, 0.9923, 1.1185, 1.3309, 1.1971, 1.0067, 1.0080, 1.2036,
1.5397, 1.0383, 0.7672, 0.7551, 0.4878, 0.8771, 0.7565, 0.8775,
0.9042, 0.4595, 0.6157, 0.4954, 0.1857, 0.0307, 0.0199, 0.1033
],
])
# fmt: on
input_speech = self._load_datasamples(1)
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
input_features = feature_extractor(input_speech, sampling_rate=16000, return_tensors="pt").input_features
self.assertTrue(np.allclose(input_features[0, 100:103], expected, atol=1e-4))
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MCTCT model. """
import inspect
import math
import unittest
from datasets import load_dataset
from transformers import MCTCTConfig, is_torch_available
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MCTCTForCTC, MCTCTModel, MCTCTProcessor
class MCTCTModelTester:
def __init__(
self,
parent,
batch_size=10,
seq_length=40, # speech is longer
is_training=False,
vocab_size=32,
hidden_size=128 * 4,
num_hidden_layers=4,
intermediate_size=20,
num_attention_heads=4,
attention_head_dim=128,
max_position_embeddings=920,
layer_norm_eps=1e-5,
layerdrop=0.3,
hidden_act="relu",
initializer_range=0.02,
hidden_dropout_prob=0.3,
attention_probs_dropout_prob=0.3,
conv_glu_dim=1,
conv_dropout=0.3,
num_conv_layers=1,
conv_kernel=(7,),
conv_stride=(3,),
input_feat_per_channel=80,
input_channels=1,
conv_channels=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length # speech is longer
self.is_training = is_training
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.layerdrop = layerdrop
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.conv_glu_dim = conv_glu_dim
self.conv_dropout = conv_dropout
self.num_conv_layers = num_conv_layers
self.conv_kernel = conv_kernel
self.conv_stride = conv_stride
self.input_feat_per_channel = input_feat_per_channel
self.input_channels = input_channels
self.conv_channels = conv_channels
output_seq_length = self.seq_length
dilation = 1
for _, kernel_sz, stride in zip(range(self.num_conv_layers), self.conv_kernel, self.conv_stride):
padding = kernel_sz // 2
output_seq_length = output_seq_length + 2 * padding - dilation * (kernel_sz - 1) - 1
output_seq_length = torch.div(output_seq_length, stride, rounding_mode="trunc") + 1
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
def prepare_config_and_inputs(self):
input_features = floats_tensor(
[self.batch_size, self.seq_length, self.input_feat_per_channel], self.vocab_size
)
attention_mask = torch.ones([self.batch_size, self.seq_length], dtype=torch.long, device=torch_device)
config = self.get_config()
return config, input_features, attention_mask
def get_config(self):
return MCTCTConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
intermediate_size=self.intermediate_size,
num_attention_heads=self.num_attention_heads,
attention_head_dim=self.attention_head_dim,
max_position_embeddings=self.max_position_embeddings,
layer_norm_eps=self.layer_norm_eps,
layerdrop=self.layerdrop,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
conv_glu_dim=self.conv_glu_dim,
conv_dropout=self.conv_dropout,
num_conv_layers=self.num_conv_layers,
conv_kernel=self.conv_kernel,
conv_stride=self.conv_stride,
input_feat_per_channel=self.input_feat_per_channel,
input_channels=self.input_channels,
conv_channels=self.conv_channels,
)
def create_and_check_model(self, config, input_features, attention_mask):
model = MCTCTModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_features, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_model_for_ctc(self, config, input_features, attention_mask):
config.add_adapter = True
config.output_hidden_size = 2 * config.hidden_size
model = MCTCTForCTC(config=config)
model.to(torch_device)
model.eval()
result = model(input_features, attention_mask=attention_mask)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.adapter_output_seq_length, self.vocab_size)
)
def create_and_check_batch_inference(self, config, input_features, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
model = MCTCTModel(config=config)
model.to(torch_device)
model.eval()
input_features = input_features[:3]
attention_mask = torch.ones(input_features.shape[:-1], device=torch_device, dtype=torch.bool)
input_lengths = [input_features.shape[-1] // i for i in [2, 2, 1]]
# pad input
for i in range(len(input_lengths)):
input_features[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0.0
batch_outputs = model(input_features, attention_mask=attention_mask).last_hidden_state
for i in range(input_features.shape[0]):
input_slice = input_features[i : i + 1, : input_lengths[i]]
output = model(input_slice).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_features, *args):
model = MCTCTForCTC(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_features = input_features[:3]
# input_features is a 2D window for each sequence
attention_mask = torch.ones(input_features.shape[:-1], device=torch_device, dtype=torch.long)
# -2 since input_features is a 2D window for each sequence in batch
input_lengths = [input_features.shape[-2] // i for i in [2, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_features.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_features[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_features, attention_mask=attention_mask, labels=labels).loss.item()
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_features, attention_mask=attention_mask, labels=labels).loss.item()
self.parent.assertTrue(isinstance(sum_loss, float))
self.parent.assertTrue(isinstance(mean_loss, float))
def check_ctc_training(self, config, input_features, *args):
config.ctc_zero_infinity = True
model = MCTCTForCTC(config=config)
model.to(torch_device)
model.train()
input_features = input_features[:3]
input_lengths = [input_features.shape[-2] // i for i in [2, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_features.shape[0], max(max_length_labels) - 1), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_features[i, input_lengths[i] :] = 0.0
if max_length_labels[i] < labels.shape[-1]:
# it's important that we make sure that target lenghts are at least
# one shorter than logit lenghts to prevent -inf
labels[i, max_length_labels[i] - 1 :] = -100
loss = model(input_features, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_labels_out_of_vocab(self, config, input_features, *args):
model = MCTCTForCTC(config)
model.to(torch_device)
model.train()
input_features = input_features[:3]
input_lengths = [input_features.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_features.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
with self.parent.assertRaises(ValueError):
model(input_features, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_features, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_features": input_features, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class MCTCTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (MCTCTForCTC, MCTCTModel) if is_torch_available() else ()
pipeline_model_mapping = (
{"automatic-speech-recognition": MCTCTForCTC, "feature-extraction": MCTCTModel} if is_torch_available() else {}
)
test_pruning = False
test_headmasking = False
test_torchscript = False
def setUp(self):
self.model_tester = MCTCTModelTester(self)
self.config_tester = ConfigTester(self, config_class=MCTCTConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# MCTCT has no inputs_embeds
def test_inputs_embeds(self):
pass
# `input_ids` is renamed to `input_features`
def test_forward_signature(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"input_features",
"attention_mask",
"head_mask",
"output_attentions",
"output_hidden_states",
"return_dict",
]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
# MCTCT cannot resize token embeddings
# since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# MCTCT has no inputs_embeds
def test_model_common_attributes(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
config.layerdrop = 0.0
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
input_features = inputs_dict["input_features"]
input_lengths = torch.tensor(
[input_features.shape[1] for _ in range(input_features.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_features.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"objective.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "codevectors") and module.codevectors is not None:
module.codevectors.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
@slow
def test_model_from_pretrained(self):
model = MCTCTModel.from_pretrained("speechbrain/m-ctc-t-large")
self.assertIsNotNone(model)
@require_torch
class MCTCTRobustModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (MCTCTForCTC, MCTCTModel) if is_torch_available() else ()
test_pruning = False
test_headmasking = False
test_torchscript = False
def setUp(self):
self.model_tester = MCTCTModelTester(self)
self.config_tester = ConfigTester(self, config_class=MCTCTConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_batched_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_batch_inference(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# MCTCT has no inputs_embeds
def test_inputs_embeds(self):
pass
# `input_ids` is renamed to `input_features`
def test_forward_signature(self):
pass
# MCTCT cannot resize token embeddings
# since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# MCTCT has no inputs_embeds
# and thus the `get_input_embeddings` fn
# is not implemented
def test_model_common_attributes(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_features = inputs_dict["input_features"]
input_lengths = torch.tensor(
[input_features.shape[1] for _ in range(input_features.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_features.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"objective.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "codevectors") and module.codevectors is not None:
module.codevectors.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model = MCTCTModel.from_pretrained("speechbrain/m-ctc-t-large")
self.assertIsNotNone(model)
@require_torch
@require_soundfile
@slow
class MCTCTModelIntegrationTest(unittest.TestCase):
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_inference_ctc_normal(self):
model = MCTCTForCTC.from_pretrained("speechbrain/m-ctc-t-large")
model.to(torch_device)
processor = MCTCTProcessor.from_pretrained("speechbrain/m-ctc-t-large", do_lower_case=True)
input_speech = self._load_datasamples(1)
input_features = processor(input_speech, return_tensors="pt").input_features.to(torch_device)
with torch.no_grad():
logits = model(input_features).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = ["a man said to the universe, sir, i exist."]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_ctc_normal_batched(self):
model = MCTCTForCTC.from_pretrained("speechbrain/m-ctc-t-large")
model.to(torch_device)
processor = MCTCTProcessor.from_pretrained("speechbrain/m-ctc-t-large", do_lower_case=True)
input_speech = self._load_datasamples(2)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_features = inputs.input_features.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
logits = model(input_features, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe, sir, i exist.",
'"sweat-covered brion\'s body, trickling into the tight-lowing clossa was the only germent huor."',
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_ctc_robust_batched(self):
model = MCTCTForCTC.from_pretrained("speechbrain/m-ctc-t-large").to(torch_device)
processor = MCTCTProcessor.from_pretrained("speechbrain/m-ctc-t-large", do_lower_case=True)
input_speech = self._load_datasamples(4)
inputs = processor(input_speech, return_tensors="pt", padding=True, return_attention_mask=True)
input_features = inputs.input_features.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
logits = model(input_features, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe, sir, i exist.",
'"sweat-covered brion\'s body, trickling into the tight-lowing clossa was the only germent huor." "',
"\"the cadona's chest still-dripping bloodthe acofis overstrained eyes, even the soring arena around him"
" with thousands of spectators retrivialities not worth-thinking about.",
"his instant panic was followed by a small sharp blow high on his chestr.",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from transformers import MCTCTProcessor, is_speech_available, is_torch_available
from transformers.file_utils import FEATURE_EXTRACTOR_NAME
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES, Wav2Vec2CTCTokenizer
from transformers.testing_utils import require_torch, require_torchaudio
if is_speech_available() and is_torch_available():
from transformers import MCTCTFeatureExtractor
from .test_feature_extraction_mctct import floats_list
@require_torch
@require_torchaudio
class MCTCTProcessorTest(unittest.TestCase):
def setUp(self):
vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ")
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.add_kwargs_tokens_map = {
"pad_token": "<pad>",
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
}
feature_extractor_map = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 16000,
"return_attention_mask": False,
"do_normalize": True,
}
self.tmpdirname = tempfile.mkdtemp()
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(feature_extractor_map) + "\n")
def get_tokenizer(self, **kwargs_init):
kwargs = self.add_kwargs_tokens_map.copy()
kwargs.update(kwargs_init)
return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return MCTCTFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = MCTCTProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, MCTCTFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = MCTCTProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = MCTCTProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, MCTCTFeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = MCTCTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
self.assertListEqual(
processor.model_input_names,
feature_extractor.model_input_names,
msg="`processor` and `feature_extractor` model input names do not match",
)
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the RetriBERT tokenizer. """
import os
import unittest
from transformers import RetriBertTokenizer, RetriBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english, merge_model_tokenizer_mappings
# Copied from transformers.tests.bert.test_modeling_bert.py with Bert->RetriBert
@require_tokenizers
class RetriBertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = RetriBertTokenizer
test_slow_tokenizer = True
rust_tokenizer_class = RetriBertTokenizerFast
test_rust_tokenizer = True
space_between_special_tokens = True
from_pretrained_filter = filter_non_english
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00E9d,running"
output_text = "unwanted, running"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("UNwant\u00E9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
# With lower casing
tokenizer = self.get_tokenizer(do_lower_case=True)
rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True)
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
def test_chinese(self):
tokenizer = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"])
def test_basic_tokenizer_lower(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"])
def test_basic_tokenizer_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_default(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_no_lower(self):
tokenizer = BasicTokenizer(do_lower_case=False)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_respects_never_split_tokens(self):
tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"])
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]
)
def test_wordpiece_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
vocab = {}
for i, token in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"])
self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
def test_is_whitespace(self):
self.assertTrue(_is_whitespace(" "))
self.assertTrue(_is_whitespace("\t"))
self.assertTrue(_is_whitespace("\r"))
self.assertTrue(_is_whitespace("\n"))
self.assertTrue(_is_whitespace("\u00A0"))
self.assertFalse(_is_whitespace("A"))
self.assertFalse(_is_whitespace("-"))
def test_is_control(self):
self.assertTrue(_is_control("\u0005"))
self.assertFalse(_is_control("A"))
self.assertFalse(_is_control(" "))
self.assertFalse(_is_control("\t"))
self.assertFalse(_is_control("\r"))
def test_is_punctuation(self):
self.assertTrue(_is_punctuation("-"))
self.assertTrue(_is_punctuation("$"))
self.assertTrue(_is_punctuation("`"))
self.assertTrue(_is_punctuation("."))
self.assertFalse(_is_punctuation("A"))
self.assertFalse(_is_punctuation(" "))
def test_clean_text(self):
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]])
self.assertListEqual(
[rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]
)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("yjernite/retribert-base-uncased")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_2 + [102]
def test_offsets_with_special_characters(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
tokens = tokenizer_r.encode_plus(
sentence,
return_attention_mask=False,
return_token_type_ids=False,
return_offsets_mapping=True,
add_special_tokens=True,
)
do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False
expected_results = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])
)
self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
def test_change_tokenize_chinese_chars(self):
list_of_commun_chinese_char = ["的", "人", "有"]
text_with_chinese_char = "".join(list_of_commun_chinese_char)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
kwargs["tokenize_chinese_chars"] = True
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False)
ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False)
tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r)
tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(tokens_without_spe_char_p, list_of_commun_chinese_char)
self.assertListEqual(tokens_without_spe_char_r, list_of_commun_chinese_char)
kwargs["tokenize_chinese_chars"] = False
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False)
ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False)
tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r)
tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p)
# it is expected that only the first Chinese character is not preceded by "##".
expected_tokens = [
f"##{token}" if idx != 0 else token for idx, token in enumerate(list_of_commun_chinese_char)
]
self.assertListEqual(tokens_without_spe_char_p, expected_tokens)
self.assertListEqual(tokens_without_spe_char_r, expected_tokens)
# RetriBertModel doesn't define `get_input_embeddings` and it's forward method doesn't take only the output of the tokenizer as input
@require_torch
@slow
def test_torch_encode_plus_sent_to_model(self):
import torch
from transformers import MODEL_MAPPING, TOKENIZER_MAPPING
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
return
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
config = config_class()
if config.is_encoder_decoder or config.pad_token_id is None:
return
model = model_class(config)
# The following test is different from the common's one
self.assertGreaterEqual(model.bert_query.get_input_embeddings().weight.shape[0], len(tokenizer))
# Build sequence
first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
sequence = " ".join(first_ten_tokens)
encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
# Ensure that the BatchEncoding.to() method works.
encoded_sequence.to(model.device)
batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
# This should not fail
with torch.no_grad(): # saves some time
# The following lines are different from the common's ones
model.embed_questions(**encoded_sequence)
model.embed_questions(**batch_encoded_sequence)
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from typing import List
import pandas as pd
from transformers import AddedToken, TapexTokenizer
from transformers.models.tapex.tokenization_tapex import VOCAB_FILES_NAMES
from transformers.testing_utils import is_pt_tf_cross_test, require_pandas, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_pandas
class TapexTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = TapexTokenizer
test_rust_tokenizer = False
from_pretrained_kwargs = {"cls_token": "<s>"}
test_seq2seq = False
def setUp(self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
# fmt: off
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>"] # noqa: E231
# fmt: on
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_table(self, tokenizer, length=5):
toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))]
if length == 0:
data = {}
else:
data = {toks[0]: [toks[tok] for tok in range(1, length)]}
table = pd.DataFrame.from_dict(data)
return table
def get_table_and_query(self, tokenizer, length=5):
toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))]
table = self.get_table(tokenizer, length=length - 3)
query = " ".join(toks[:3])
return table, query
def get_clean_sequence(
self,
tokenizer,
with_prefix_space=False,
max_length=20,
min_length=5,
empty_table: bool = False,
add_special_tokens: bool = True,
return_table_and_query: bool = False,
):
toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))]
if empty_table:
table = pd.DataFrame.from_dict({})
query = " ".join(toks[:min_length])
else:
data = {toks[0]: [toks[tok] for tok in range(1, min_length - 3)]}
table = pd.DataFrame.from_dict(data)
query = " ".join(toks[:3])
output_ids = tokenizer.encode(table, query, add_special_tokens=add_special_tokens)
output_txt = tokenizer.decode(output_ids)
if len(output_ids) < min_length:
raise ValueError("Update the code to generate the sequences so that they are larger")
if len(output_ids) > max_length:
raise ValueError("Update the code to generate the sequences so that they are smaller")
if return_table_and_query:
return output_txt, output_ids, table, query
return output_txt, output_ids
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer_roberta(self):
tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower newer"
bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def roberta_dict_integration_testing(self):
tokenizer = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2])
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False),
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2],
)
def test_add_tokens_tokenizer(self):
tokenizers: List[TapexTokenizer] = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
vocab_size = tokenizer.vocab_size
all_size = len(tokenizer)
self.assertNotEqual(vocab_size, 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
added_toks = tokenizer.add_tokens(new_toks)
vocab_size_2 = tokenizer.vocab_size
all_size_2 = len(tokenizer)
self.assertNotEqual(vocab_size_2, 0)
self.assertEqual(vocab_size, vocab_size_2)
self.assertEqual(added_toks, len(new_toks))
self.assertEqual(all_size_2, all_size + len(new_toks))
tokens = tokenizer.encode(table, "aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
self.assertGreaterEqual(len(tokens), 4)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
vocab_size_3 = tokenizer.vocab_size
all_size_3 = len(tokenizer)
self.assertNotEqual(vocab_size_3, 0)
self.assertEqual(vocab_size, vocab_size_3)
self.assertEqual(added_toks_2, len(new_toks_2))
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
tokens = tokenizer.encode(
table,
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l",
add_special_tokens=False,
)
self.assertGreaterEqual(len(tokens), 6)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[0], tokens[1])
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokens[-3])
self.assertEqual(tokens[0], tokenizer.eos_token_id)
self.assertEqual(tokens[-2], tokenizer.pad_token_id)
def test_token_type_ids(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
empty_table = self.get_table(tokenizer, length=0)
seq_0 = "Test this method."
# We want to have sequence 0 and sequence 1 are tagged
# respectively with 0 and 1 token_ids
# (regardless of whether the model use token type ids)
# We use this assumption in the QA pipeline among other place
output = tokenizer(empty_table, seq_0, return_token_type_ids=True)
# Assert that the token type IDs have the same length as the input IDs
self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"]))
self.assertIn(0, output["token_type_ids"])
def test_add_special_tokens(self):
tokenizers: List[TapexTokenizer] = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
input_table = self.get_table(tokenizer, length=0)
special_token = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token})
encoded_special_token = tokenizer.encode(input_table, special_token, add_special_tokens=False)
self.assertEqual(len(encoded_special_token), 1)
decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True)
self.assertTrue(special_token not in decoded)
def test_batch_encode_plus_overflowing_tokens(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
table = self.get_table(tokenizer, length=10)
string_sequences = ["Testing the prepare_for_model method.", "Test"]
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
tokenizer.batch_encode_plus(
table, string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3
)
@is_pt_tf_cross_test
def test_batch_encode_plus_tensors(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
table = self.get_table(tokenizer, length=0)
# A Tensor cannot be build by sequences which are not the same size
self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="pt")
self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="tf")
if tokenizer.pad_token_id is None:
self.assertRaises(
ValueError,
tokenizer.batch_encode_plus,
table,
sequences,
padding=True,
return_tensors="pt",
)
self.assertRaises(
ValueError,
tokenizer.batch_encode_plus,
table,
sequences,
padding="longest",
return_tensors="tf",
)
else:
pytorch_tensor = tokenizer.batch_encode_plus(table, sequences, padding=True, return_tensors="pt")
tensorflow_tensor = tokenizer.batch_encode_plus(
table, sequences, padding="longest", return_tensors="tf"
)
encoded_sequences = tokenizer.batch_encode_plus(table, sequences, padding=True)
for key in encoded_sequences.keys():
pytorch_value = pytorch_tensor[key].tolist()
tensorflow_value = tensorflow_tensor[key].numpy().tolist()
encoded_value = encoded_sequences[key]
self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
# Test not batched
table = self.get_table(tokenizer, length=0)
encoded_sequences_1 = tokenizer.encode_plus(table, sequences[0])
encoded_sequences_2 = tokenizer(table, sequences[0])
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
# Test not batched pairs
table = self.get_table(tokenizer, length=10)
encoded_sequences_1 = tokenizer.encode_plus(table, sequences[1])
encoded_sequences_2 = tokenizer(table, sequences[1])
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
# Test batched
table = self.get_table(tokenizer, length=0)
encoded_sequences_1 = tokenizer.batch_encode_plus(table, sequences)
encoded_sequences_2 = tokenizer(table, sequences)
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
def test_internal_consistency(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
input_text, output_text = self.get_input_output_texts(tokenizer)
tokens = tokenizer.tokenize(input_text)
ids = tokenizer.convert_tokens_to_ids(tokens)
ids_2 = tokenizer.encode(table, input_text, add_special_tokens=False)
self.assertListEqual(ids, ids_2)
tokens_2 = tokenizer.convert_ids_to_tokens(ids)
self.assertNotEqual(len(tokens_2), 0)
text_2 = tokenizer.decode(ids)
self.assertIsInstance(text_2, str)
self.assertEqual(text_2, output_text)
def test_save_and_load_tokenizer(self):
# safety check on max_len default value so we are sure the test works
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
self.assertNotEqual(tokenizer.model_max_length, 42)
# Now let's start the test
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
table = self.get_table(tokenizer, length=0)
tmpdirname = tempfile.mkdtemp()
sample_text = " He is very happy, UNwant\u00E9d,running"
before_tokens = tokenizer.encode(table, sample_text, add_special_tokens=False)
before_vocab = tokenizer.get_vocab()
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.encode(table, sample_text, add_special_tokens=False)
after_vocab = after_tokenizer.get_vocab()
self.assertListEqual(before_tokens, after_tokens)
self.assertDictEqual(before_vocab, after_vocab)
shutil.rmtree(tmpdirname)
def test_number_of_added_tokens(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table, query = self.get_table_and_query(tokenizer)
sequences = tokenizer.encode(table, query, add_special_tokens=False)
attached_sequences = tokenizer.encode(table, query, add_special_tokens=True)
self.assertEqual(2, len(attached_sequences) - len(sequences))
@unittest.skip("TAPEX cannot handle `prepare_for_model` without passing by `encode_plus` or `batch_encode_plus`")
def test_prepare_for_model(self):
pass
@unittest.skip("TAPEX tokenizer does not support pairs.")
def test_maximum_encoding_length_pair_input(self):
pass
@unittest.skip("TAPEX tokenizer does not support pairs.")
def test_maximum_encoding_length_single_input(self):
pass
@unittest.skip("Not implemented")
def test_right_and_left_truncation(self):
pass
def test_encode_decode_with_spaces(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)]
tokenizer.add_tokens(new_toks)
input = "[ABC][DEF][ABC][DEF]"
if self.space_between_special_tokens:
output = "[ABC] [DEF] [ABC] [DEF]"
else:
output = input
encoded = tokenizer.encode(table, input, add_special_tokens=False)
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
self.assertIn(decoded, [output, output.lower()])
def test_tokenize_special_tokens(self):
"""Test `tokenize` with special tokens."""
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
SPECIAL_TOKEN_1 = "[SPECIAL_TOKEN_1]"
SPECIAL_TOKEN_2 = "[SPECIAL_TOKEN_2]"
# TODO:
# Can we combine `unique_no_split_tokens` and `all_special_tokens`(and properties related to it)
# with one variable(property) for a better maintainability?
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True)
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]})
token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1)
token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2)
self.assertEqual(len(token_1), 1)
self.assertEqual(len(token_2), 1)
self.assertEqual(token_1[0], SPECIAL_TOKEN_1)
self.assertEqual(token_2[0], SPECIAL_TOKEN_2)
def test_special_tokens_mask(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequence_0 = "Encode this."
# Testing single inputs
encoded_sequence = tokenizer.encode(table, sequence_0, add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(
table, sequence_0, add_special_tokens=True, return_special_tokens_mask=True
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
self.assertEqual(encoded_sequence, filtered_sequence)
def test_padding_to_max_length(self):
"""We keep this test for backward compatibility but it should be removed when `pad_to_max_length` will be deprecated"""
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer)
sequence = "Sequence"
padding_size = 10
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequence)
padding_idx = tokenizer.pad_token_id
# Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
table,
sequence,
max_length=sequence_length + padding_size,
pad_to_max_length=True,
)
padded_sequence_length = len(padded_sequence)
self.assertEqual(sequence_length + padding_size, padded_sequence_length)
self.assertListEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
# Check that nothing is done when a maximum length is not specified
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(table, sequence, pad_to_max_length=True)
padded_sequence_right_length = len(padded_sequence_right)
self.assertEqual(sequence_length, padded_sequence_right_length)
self.assertListEqual(encoded_sequence, padded_sequence_right)
def test_padding_to_multiple_of(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
if tokenizer.pad_token is None:
self.skipTest("No padding token.")
else:
empty_tokens = tokenizer(table, padding=True, pad_to_multiple_of=8)
normal_tokens = tokenizer(table, "This is a sample input", padding=True, pad_to_multiple_of=8)
for key, value in empty_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
normal_tokens = tokenizer(table, "This", pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# Should also work with truncation
normal_tokens = tokenizer(table, "This", padding=True, truncation=True, pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
def test_right_and_left_padding(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequence = "Sequence"
padding_size = 10
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequence)
padding_idx = tokenizer.pad_token_id
# RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
table, sequence, max_length=sequence_length + padding_size, padding="max_length"
)
padded_sequence_length = len(padded_sequence)
self.assertEqual(sequence_length + padding_size, padded_sequence_length)
self.assertListEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
# LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "left"
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
table, sequence, max_length=sequence_length + padding_size, padding="max_length"
)
padded_sequence_length = len(padded_sequence)
self.assertEqual(sequence_length + padding_size, padded_sequence_length)
self.assertListEqual([padding_idx] * padding_size + encoded_sequence, padded_sequence)
# RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
encoded_sequence = tokenizer.encode(table, sequence)
sequence_length = len(encoded_sequence)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(table, sequence, padding=True)
padded_sequence_right_length = len(padded_sequence_right)
self.assertEqual(sequence_length, padded_sequence_right_length)
self.assertListEqual(encoded_sequence, padded_sequence_right)
tokenizer.padding_side = "left"
padded_sequence_left = tokenizer.encode(table, sequence, padding="longest")
padded_sequence_left_length = len(padded_sequence_left)
self.assertEqual(sequence_length, padded_sequence_left_length)
self.assertListEqual(encoded_sequence, padded_sequence_left)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(table, sequence)
padded_sequence_right_length = len(padded_sequence_right)
self.assertEqual(sequence_length, padded_sequence_right_length)
self.assertListEqual(encoded_sequence, padded_sequence_right)
tokenizer.padding_side = "left"
padded_sequence_left = tokenizer.encode(table, sequence, padding=False)
padded_sequence_left_length = len(padded_sequence_left)
self.assertEqual(sequence_length, padded_sequence_left_length)
self.assertListEqual(encoded_sequence, padded_sequence_left)
def test_encode_plus_with_padding(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequence = "Sequence"
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequence)
padding_size = 10
padding_idx = tokenizer.pad_token_id
token_type_padding_idx = tokenizer.pad_token_type_id
encoded_sequence = tokenizer.encode_plus(table, sequence, return_special_tokens_mask=True)
input_ids = encoded_sequence["input_ids"]
special_tokens_mask = encoded_sequence["special_tokens_mask"]
sequence_length = len(input_ids)
# Test 'longest' and 'no_padding' don't do anything
tokenizer.padding_side = "right"
not_padded_sequence = tokenizer.encode_plus(
table,
sequence,
padding=False,
return_special_tokens_mask=True,
)
not_padded_input_ids = not_padded_sequence["input_ids"]
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
not_padded_sequence_length = len(not_padded_input_ids)
self.assertEqual(sequence_length, not_padded_sequence_length)
self.assertListEqual(input_ids, not_padded_input_ids)
self.assertListEqual(special_tokens_mask, not_padded_special_tokens_mask)
not_padded_sequence = tokenizer.encode_plus(
table,
sequence,
padding=False,
return_special_tokens_mask=True,
)
not_padded_input_ids = not_padded_sequence["input_ids"]
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
not_padded_sequence_length = len(not_padded_input_ids)
self.assertEqual(sequence_length, not_padded_sequence_length)
self.assertListEqual(input_ids, not_padded_input_ids)
self.assertListEqual(special_tokens_mask, not_padded_special_tokens_mask)
# Test right padding
tokenizer.padding_side = "right"
right_padded_sequence = tokenizer.encode_plus(
table,
sequence,
max_length=sequence_length + padding_size,
padding="max_length",
return_special_tokens_mask=True,
)
right_padded_input_ids = right_padded_sequence["input_ids"]
right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
right_padded_sequence_length = len(right_padded_input_ids)
self.assertEqual(sequence_length + padding_size, right_padded_sequence_length)
self.assertListEqual(input_ids + [padding_idx] * padding_size, right_padded_input_ids)
self.assertListEqual(special_tokens_mask + [1] * padding_size, right_padded_special_tokens_mask)
# Test left padding
tokenizer.padding_side = "left"
left_padded_sequence = tokenizer.encode_plus(
table,
sequence,
max_length=sequence_length + padding_size,
padding="max_length",
return_special_tokens_mask=True,
)
left_padded_input_ids = left_padded_sequence["input_ids"]
left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
left_padded_sequence_length = len(left_padded_input_ids)
self.assertEqual(sequence_length + padding_size, left_padded_sequence_length)
self.assertListEqual([padding_idx] * padding_size + input_ids, left_padded_input_ids)
self.assertListEqual([1] * padding_size + special_tokens_mask, left_padded_special_tokens_mask)
if "token_type_ids" in tokenizer.model_input_names:
token_type_ids = encoded_sequence["token_type_ids"]
left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
right_padded_token_type_ids = right_padded_sequence["token_type_ids"]
self.assertListEqual(
(token_type_ids + [[token_type_padding_idx] * 7] * padding_size, right_padded_token_type_ids)
)
self.assertListEqual(
[[token_type_padding_idx] * 7] * padding_size + token_type_ids, left_padded_token_type_ids
)
if "attention_mask" in tokenizer.model_input_names:
attention_mask = encoded_sequence["attention_mask"]
right_padded_attention_mask = right_padded_sequence["attention_mask"]
left_padded_attention_mask = left_padded_sequence["attention_mask"]
self.assertListEqual(attention_mask + [0] * padding_size, right_padded_attention_mask)
self.assertListEqual([0] * padding_size + attention_mask, left_padded_attention_mask)
def test_batch_encode_plus_padding(self):
# Test that padded sequences are equivalent between batch_encode_plus and encode_plus
# Right padding tests
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
max_length = 100
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequences)
encoded_sequences = [
tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length")
for sequence in sequences
]
encoded_sequences_batch = tokenizer.batch_encode_plus(
table, sequences, max_length=max_length, padding="max_length"
)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
# Left padding tests
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
tokenizer.padding_side = "left"
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
max_length = 100
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequences)
encoded_sequences = [
tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length")
for sequence in sequences
]
encoded_sequences_batch = tokenizer.batch_encode_plus(
table, sequences, max_length=max_length, padding="max_length"
)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
def test_batch_encode_plus_batch_sequence_length(self):
# Tests that all encoded values have the correct size
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
table = self.get_table(tokenizer, length=0)
sequences = [
"Testing batch encode plus",
"Testing batch encode plus with different sequence lengths",
"Testing batch encode plus with different sequence lengths correctly pads",
]
encoded_sequences = [tokenizer.encode_plus(table, sequence) for sequence in sequences]
encoded_sequences_batch = tokenizer.batch_encode_plus(table, sequences, padding=False)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
maximum_length = len(
max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
)
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequences)
encoded_sequences_padded = [
tokenizer.encode_plus(table, sequence, max_length=maximum_length, padding="max_length")
for sequence in sequences
]
encoded_sequences_batch_padded = tokenizer.batch_encode_plus(table, sequences, padding=True)
self.assertListEqual(
encoded_sequences_padded,
self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
)
# check 'longest' is unsensitive to a max length
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=True)
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
table, sequences, max_length=maximum_length + 10, padding="longest"
)
for key in encoded_sequences_batch_padded_1.keys():
self.assertListEqual(
encoded_sequences_batch_padded_1[key],
encoded_sequences_batch_padded_2[key],
)
# check 'no_padding' is unsensitive to a max length
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=False)
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
table, sequences, max_length=maximum_length + 10, padding=False
)
for key in encoded_sequences_batch_padded_1.keys():
self.assertListEqual(
encoded_sequences_batch_padded_1[key],
encoded_sequences_batch_padded_2[key],
)
def test_special_tokens_mask_input_pairs(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
sequence_0 = "Encode this."
empty_table = self.get_table(tokenizer, length=0)
table = self.get_table(tokenizer, length=10)
encoded_sequence = tokenizer.encode(empty_table, sequence_0, add_special_tokens=False)
number_of_tokens = len(encoded_sequence)
encoded_sequence += tokenizer.encode(table, "", add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(
table,
sequence_0,
add_special_tokens=True,
return_special_tokens_mask=True,
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
]
# NOTE: as TAPEX adds a space between a table and a sequence, we need to remove it
# in order to have equivalent results with encoding an empty table or empty sequence
del filtered_sequence[number_of_tokens + 1]
filtered_sequence = [x for x in filtered_sequence if x is not None]
print("Encoded sequence:", encoded_sequence)
print("Filtered sequence:", filtered_sequence)
self.assertEqual(encoded_sequence, filtered_sequence)
@slow
def test_full_tokenizer(self):
question = "Greece held its last Summer Olympics in 2004"
table_dict = {
"header": ["Year", "City", "Country", "Nations"],
"rows": [
[1896, "Athens", "Greece", 14],
[1900, "Paris", "France", 24],
[1904, "St. Louis", "USA", 12],
[2004, "Athens", "Greece", 201],
[2008, "Beijing", "China", 204],
[2012, "London", "UK", 204],
],
}
table = pd.DataFrame.from_dict(table_dict["rows"])
table.columns = table_dict["header"]
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
encoding = tokenizer(table, question)
# fmt: off
expected_results = {'input_ids': [0, 821, 5314, 1755, 547, 63, 94, 1035, 1021, 31434, 2857, 11, 4482, 11311, 4832, 76, 1721, 343, 1721, 247, 1721, 3949, 3236, 112, 4832, 42773, 1721, 23, 27859, 1721, 821, 5314, 1755, 1721, 501, 3236, 132, 4832, 23137, 1721, 2242, 354, 1721, 6664, 2389, 1721, 706, 3236, 155, 4832, 42224, 1721, 1690, 4, 26120, 354, 1721, 201, 102, 1721, 316, 3236, 204, 4832, 4482, 1721, 23, 27859, 1721, 821, 5314, 1755, 1721, 21458, 3236, 195, 4832, 2266, 1721, 28, 40049, 1721, 1855, 1243, 1721, 28325, 3236, 231, 4832, 1125, 1721, 784, 24639, 1721, 1717, 330, 1721, 28325, 2]}
# fmt: on
self.assertListEqual(encoding.input_ids, expected_results["input_ids"])
def test_tokenizer_as_target(self):
# by default the tokenizer do_lower_case
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base")
answer_text = "tapex is a good model!"
expected_src_tokens = [0, 90, 5776, 1178, 16, 10, 205, 1421, 328, 2]
answer_encoding = tokenizer(answer=answer_text)
self.assertListEqual(answer_encoding.input_ids, expected_src_tokens)
@slow
def test_tokenizer_lower_case(self):
cased_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base", do_lower_case=False)
uncased_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base", do_lower_case=True)
answer_text = "Beijing, London, Paris"
answer_text_lower = "beijing, london, paris"
self.assertNotEqual(
cased_tokenizer(answer=answer_text).input_ids, uncased_tokenizer(answer=answer_text).input_ids
)
self.assertEqual(
cased_tokenizer(answer=answer_text_lower).input_ids,
uncased_tokenizer(answer=answer_text).input_ids,
)
# batched encoding assert
self.assertNotEqual(
cased_tokenizer(answer=[answer_text]).input_ids, uncased_tokenizer(answer=[answer_text]).input_ids
)
self.assertEqual(
cased_tokenizer(answer=[answer_text_lower]).input_ids,
uncased_tokenizer(answer=[answer_text]).input_ids,
)
# test input encoding lowercase
question = "Greece held its last Summer Olympics in 2004"
table_dict = {
"header": ["Year", "City", "Country", "Nations"],
"rows": [
[1896, "Athens", "Greece", 14],
[1900, "Paris", "France", 24],
[1904, "St. Louis", "USA", 12],
[2004, "Athens", "Greece", 201],
[2008, "Beijing", "China", 204],
[2012, "London", "UK", 204],
],
}
table = pd.DataFrame.from_dict(table_dict["rows"])
table.columns = table_dict["header"]
self.assertNotEqual(
cased_tokenizer(table=table, query=question).input_ids,
uncased_tokenizer(table=table, query=question).input_ids,
)
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch TrajectoryTransformer model. """
import inspect
import unittest
import numpy as np
from transformers import TrajectoryTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import TrajectoryTransformerModel
from transformers.models.trajectory_transformer.modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class TrajectoryTransformerModelTester:
def __init__(self, parent, batch_size=13, n_embd=128, action_dim=6, observation_dim=17, is_training=True):
self.parent = parent
self.batch_size = batch_size
self.n_embd = n_embd
self.action_dim = action_dim
self.observation_dim = observation_dim
self.is_training = is_training
self.seq_length = self.action_dim + self.observation_dim + 1
def prepare_config_and_inputs(self):
trajectories = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(self.batch_size)]).to(
torch_device
)
attention_mask = random_attention_mask((self.batch_size, self.seq_length)).to(torch_device)
targets = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(self.batch_size)]).to(
torch_device
)
config = self.get_config()
return config, trajectories, attention_mask, targets
def get_config(self):
return TrajectoryTransformerConfig(
batch_size=self.batch_size,
n_embd=self.n_embd,
action_dim=self.action_dim,
observation_dim=self.observation_dim,
)
def create_and_check_model(self, config, input_dict):
model = TrajectoryTransformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(trajectories=input_dict["trajectories"], attention_mask=input_dict["attention_mask"])
result = model(
trajectories=input_dict["trajectories"],
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
)
self.parent.assertEqual(result.hidden_states[-1].shape, (self.batch_size, self.seq_length, self.n_embd))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, trajectories, attention_mask, targets) = config_and_inputs
inputs_dict = {"trajectories": trajectories, "attention_mask": attention_mask, "targets": targets}
return config, inputs_dict
@require_torch
class TrajectoryTransformerModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TrajectoryTransformerModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": TrajectoryTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
test_generate_without_input_ids = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_attention_outputs = False
test_hidden_states_output = False
test_inputs_embeds = False
test_model_common_attributes = False
test_torchscript = False
def setUp(self):
self.model_tester = TrajectoryTransformerModelTester(self)
self.config_tester = ConfigTester(self, config_class=TrajectoryTransformerConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_conditional_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["trajectories"]
self.assertListEqual(arg_names[:1], expected_arg_names)
# # Input is 'trajectories' not 'input_ids'
def test_model_main_input_name(self):
model_signature = inspect.signature(getattr(TrajectoryTransformerModel, "forward"))
# The main input is the name of the argument after `self`
observed_main_input_name = list(model_signature.parameters.keys())[1]
self.assertEqual(TrajectoryTransformerModel.main_input_name, observed_main_input_name)
def test_retain_grad_hidden_states_attentions(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = self.has_attentions
model = TrajectoryTransformerModel(config)
model.to(torch_device)
outputs = model(
trajectories=input_dict["trajectories"],
attention_mask=input_dict["attention_mask"],
targets=input_dict["targets"],
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
)
output = outputs[0]
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
attentions = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(attentions.grad)
def test_training(self):
if not self.model_tester.is_training:
return
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = TrajectoryTransformerModel(config)
model.to(torch_device)
model.train()
loss = model(
trajectories=input_dict["trajectories"],
attention_mask=input_dict["attention_mask"],
targets=input_dict["targets"],
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
).loss
loss.backward()
def test_training_gradient_checkpointing(self):
if not self.model_tester.is_training:
return
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = TrajectoryTransformerModel(config)
model.gradient_checkpointing_enable()
model.to(torch_device)
model.train()
loss = model(
trajectories=input_dict["trajectories"],
attention_mask=input_dict["attention_mask"],
targets=input_dict["targets"],
output_hidden_states=True,
output_attentions=True,
use_cache=False,
return_dict=True,
).loss
loss.backward()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@slow
def test_model_from_pretrained(self):
for model_name in TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TrajectoryTransformerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class TrajectoryTransformerModelIntegrationTest(unittest.TestCase):
@slow
def test_prediction(self):
batch_size = 1
config = TrajectoryTransformerConfig.from_pretrained("CarlCochet/trajectory-transformer-halfcheetah-medium-v2")
model = TrajectoryTransformerModel.from_pretrained(
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2", config=config
)
model.to(torch_device)
model.eval()
seq_length = model.config.action_dim + model.config.observation_dim + 1
trajectories = torch.LongTensor(
[[3, 19, 20, 22, 9, 7, 23, 10, 18, 14, 13, 4, 17, 11, 5, 6, 15, 21, 2, 8, 1, 0, 12, 16]]
).to(torch_device)
outputs = model(
trajectories=trajectories,
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
)
output = outputs.logits
expected_shape = torch.Size((batch_size, seq_length, model.config.vocab_size + 1))
expected_slice = torch.tensor(
[[[-0.7193, -0.2532, -0.0898], [1.9429, 2.0434, 2.3975], [-3.3651, -2.8744, -2.4532]]]
).to(torch_device)
output_slice = output[:, :3, :3]
self.assertEqual(output.shape, expected_shape)
self.assertTrue(torch.allclose(output_slice, expected_slice, atol=1e-4))
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Van model. """
import inspect
import math
import unittest
from transformers import VanConfig
from transformers.testing_utils import require_scipy, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_scipy_available, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_scipy_available():
from scipy import stats
if is_torch_available():
import torch
from torch import nn
from transformers import VanForImageClassification, VanModel
from transformers.models.van.modeling_van import VAN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class VanModelTester:
def __init__(
self,
parent,
batch_size=2,
image_size=224,
num_channels=3,
hidden_sizes=[16, 32, 64, 128],
depths=[1, 1, 1, 1],
is_training=True,
use_labels=True,
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.hidden_sizes = hidden_sizes
self.depths = depths
self.is_training = is_training
self.use_labels = use_labels
self.num_labels = num_labels
self.type_sequence_label_size = num_labels
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return VanConfig(
num_channels=self.num_channels,
hidden_sizes=self.hidden_sizes,
depths=self.depths,
num_labels=self.num_labels,
is_decoder=False,
)
def create_and_check_model(self, config, pixel_values, labels):
model = VanModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels):
model = VanForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class VanModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Van does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (VanModel, VanForImageClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": VanModel, "image-classification": VanForImageClassification}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = VanModelTester(self)
self.config_tester = ConfigTester(self, config_class=VanConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
@unittest.skip(reason="Van does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Van does not support input and output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@require_scipy
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, module in model.named_modules():
if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm, nn.LayerNorm)):
self.assertTrue(
torch.all(module.weight == 1),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
self.assertTrue(
torch.all(module.bias == 0),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif isinstance(module, nn.Conv2d):
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
std = math.sqrt(2.0 / fan_out)
# divide by std -> mean = 0, std = 1
data = module.weight.data.cpu().flatten().numpy() / std
test = stats.anderson(data)
self.assertTrue(test.statistic > 0.05)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_stages = len(self.model_tester.hidden_sizes)
# van has no embeddings
self.assertEqual(len(hidden_states), expected_num_stages)
# Van's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in VAN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = VanModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class VanModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained(VAN_PRETRAINED_MODEL_ARCHIVE_LIST[0])
@slow
def test_inference_image_classification_head(self):
model = VanForImageClassification.from_pretrained(VAN_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([0.1029, -0.0904, -0.6365]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
...@@ -69,10 +69,6 @@ SPECIAL_CASES_TO_ALLOW = { ...@@ -69,10 +69,6 @@ SPECIAL_CASES_TO_ALLOW = {
"CvtConfig": ["layer_norm_eps"], "CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking # having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"], "PerceiverConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"RetriBertConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"TrajectoryTransformerConfig": ["layer_norm_eps"],
# used internally to calculate the feature size # used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"], "InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size # used internally to calculate the feature size
...@@ -106,7 +102,6 @@ SPECIAL_CASES_TO_ALLOW.update( ...@@ -106,7 +102,6 @@ SPECIAL_CASES_TO_ALLOW.update(
"OneFormerConfig": True, "OneFormerConfig": True,
"PerceiverConfig": True, "PerceiverConfig": True,
"RagConfig": True, "RagConfig": True,
"RetriBertConfig": True,
"SpeechT5Config": True, "SpeechT5Config": True,
"SwinConfig": True, "SwinConfig": True,
"Swin2SRConfig": True, "Swin2SRConfig": True,
...@@ -114,11 +109,9 @@ SPECIAL_CASES_TO_ALLOW.update( ...@@ -114,11 +109,9 @@ SPECIAL_CASES_TO_ALLOW.update(
"SwitchTransformersConfig": True, "SwitchTransformersConfig": True,
"TableTransformerConfig": True, "TableTransformerConfig": True,
"TapasConfig": True, "TapasConfig": True,
"TrajectoryTransformerConfig": True,
"TransfoXLConfig": True, "TransfoXLConfig": True,
"UniSpeechConfig": True, "UniSpeechConfig": True,
"UniSpeechSatConfig": True, "UniSpeechSatConfig": True,
"VanConfig": True,
"WavLMConfig": True, "WavLMConfig": True,
"WhisperConfig": True, "WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`) # TODO: @Arthur (for `alignment_head` and `alignment_layer`)
...@@ -267,6 +260,9 @@ def check_config_attributes(): ...@@ -267,6 +260,9 @@ def check_config_attributes():
"""Check the arguments in `__init__` of all configuration classes are used in python files""" """Check the arguments in `__init__` of all configuration classes are used in python files"""
configs_with_unused_attributes = {} configs_with_unused_attributes = {}
for _config_class in list(CONFIG_MAPPING.values()): for _config_class in list(CONFIG_MAPPING.values()):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
config_classes_in_module = [ config_classes_in_module = [
cls cls
......
...@@ -74,6 +74,9 @@ def check_config_docstrings_have_checkpoints(): ...@@ -74,6 +74,9 @@ def check_config_docstrings_have_checkpoints():
configs_without_checkpoint = [] configs_without_checkpoint = []
for config_class in list(CONFIG_MAPPING.values()): for config_class in list(CONFIG_MAPPING.values()):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
checkpoint = get_checkpoint_from_config_class(config_class) checkpoint = get_checkpoint_from_config_class(config_class)
name = config_class.__name__ name = config_class.__name__
......
...@@ -400,6 +400,8 @@ def check_model_list(): ...@@ -400,6 +400,8 @@ def check_model_list():
models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models") models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
_models = [] _models = []
for model in os.listdir(models_dir): for model in os.listdir(models_dir):
if model == "deprecated":
continue
model_dir = os.path.join(models_dir, model) model_dir = os.path.join(models_dir, model)
if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir): if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
_models.append(model) _models.append(model)
...@@ -445,6 +447,8 @@ def get_model_modules(): ...@@ -445,6 +447,8 @@ def get_model_modules():
] ]
modules = [] modules = []
for model in dir(transformers.models): for model in dir(transformers.models):
if model == "deprecated":
continue
# There are some magic dunder attributes in the dir, we ignore them # There are some magic dunder attributes in the dir, we ignore them
if not model.startswith("__"): if not model.startswith("__"):
model_module = getattr(transformers.models, model) model_module = getattr(transformers.models, model)
...@@ -767,6 +771,8 @@ def check_objects_being_equally_in_main_init(): ...@@ -767,6 +771,8 @@ def check_objects_being_equally_in_main_init():
obj = getattr(transformers, attr) obj = getattr(transformers, attr)
if hasattr(obj, "__module__"): if hasattr(obj, "__module__"):
module_path = obj.__module__ module_path = obj.__module__
if "models.deprecated" in module_path:
continue
module_name = module_path.split(".")[-1] module_name = module_path.split(".")[-1]
module_dir = ".".join(module_path.split(".")[:-1]) module_dir = ".".join(module_path.split(".")[:-1])
if ( if (
......
...@@ -277,9 +277,6 @@ src/transformers/models/mbart/tokenization_mbart.py ...@@ -277,9 +277,6 @@ src/transformers/models/mbart/tokenization_mbart.py
src/transformers/models/mbart/tokenization_mbart_fast.py src/transformers/models/mbart/tokenization_mbart_fast.py
src/transformers/models/mbart50/tokenization_mbart50.py src/transformers/models/mbart50/tokenization_mbart50.py
src/transformers/models/mbart50/tokenization_mbart50_fast.py src/transformers/models/mbart50/tokenization_mbart50_fast.py
src/transformers/models/mctct/configuration_mctct.py
src/transformers/models/mctct/feature_extraction_mctct.py
src/transformers/models/mctct/processing_mctct.py
src/transformers/models/megatron_bert/configuration_megatron_bert.py src/transformers/models/megatron_bert/configuration_megatron_bert.py
src/transformers/models/mgp_str/processing_mgp_str.py src/transformers/models/mgp_str/processing_mgp_str.py
src/transformers/models/mgp_str/tokenization_mgp_str.py src/transformers/models/mgp_str/tokenization_mgp_str.py
...@@ -362,8 +359,6 @@ src/transformers/models/rembert/tokenization_rembert_fast.py ...@@ -362,8 +359,6 @@ src/transformers/models/rembert/tokenization_rembert_fast.py
src/transformers/models/resnet/configuration_resnet.py src/transformers/models/resnet/configuration_resnet.py
src/transformers/models/resnet/modeling_resnet.py src/transformers/models/resnet/modeling_resnet.py
src/transformers/models/resnet/modeling_tf_resnet.py src/transformers/models/resnet/modeling_tf_resnet.py
src/transformers/models/retribert/tokenization_retribert.py
src/transformers/models/retribert/tokenization_retribert_fast.py
src/transformers/models/roberta/configuration_roberta.py src/transformers/models/roberta/configuration_roberta.py
src/transformers/models/roberta/modeling_roberta.py src/transformers/models/roberta/modeling_roberta.py
src/transformers/models/roberta/modeling_tf_roberta.py src/transformers/models/roberta/modeling_tf_roberta.py
...@@ -413,12 +408,10 @@ src/transformers/models/t5/tokenization_t5.py ...@@ -413,12 +408,10 @@ src/transformers/models/t5/tokenization_t5.py
src/transformers/models/t5/tokenization_t5_fast.py src/transformers/models/t5/tokenization_t5_fast.py
src/transformers/models/table_transformer/modeling_table_transformer.py src/transformers/models/table_transformer/modeling_table_transformer.py
src/transformers/models/tapas/tokenization_tapas.py src/transformers/models/tapas/tokenization_tapas.py
src/transformers/models/tapex/tokenization_tapex.py
src/transformers/models/time_series_transformer/configuration_time_series_transformer.py src/transformers/models/time_series_transformer/configuration_time_series_transformer.py
src/transformers/models/time_series_transformer/modeling_time_series_transformer.py src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
src/transformers/models/timesformer/configuration_timesformer.py src/transformers/models/timesformer/configuration_timesformer.py
src/transformers/models/timesformer/modeling_timesformer.py src/transformers/models/timesformer/modeling_timesformer.py
src/transformers/models/trajectory_transformer/configuration_trajectory_transformer.py
src/transformers/models/transfo_xl/configuration_transfo_xl.py src/transformers/models/transfo_xl/configuration_transfo_xl.py
src/transformers/models/transfo_xl/tokenization_transfo_xl.py src/transformers/models/transfo_xl/tokenization_transfo_xl.py
src/transformers/models/trocr/configuration_trocr.py src/transformers/models/trocr/configuration_trocr.py
...@@ -431,7 +424,6 @@ src/transformers/models/unispeech/configuration_unispeech.py ...@@ -431,7 +424,6 @@ src/transformers/models/unispeech/configuration_unispeech.py
src/transformers/models/unispeech/modeling_unispeech.py src/transformers/models/unispeech/modeling_unispeech.py
src/transformers/models/unispeech_sat/modeling_unispeech_sat.py src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
src/transformers/models/upernet/modeling_upernet.py src/transformers/models/upernet/modeling_upernet.py
src/transformers/models/van/modeling_van.py
src/transformers/models/videomae/feature_extraction_videomae.py src/transformers/models/videomae/feature_extraction_videomae.py
src/transformers/models/videomae/image_processing_videomae.py src/transformers/models/videomae/image_processing_videomae.py
src/transformers/models/videomae/modeling_videomae.py src/transformers/models/videomae/modeling_videomae.py
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment