Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
9080607b
"docs/source/vscode:/vscode.git/clone" did not exist on "fe085560d05b3a4a00464f9dd693dda34dc93d63"
Unverified
Commit
9080607b
authored
Nov 03, 2022
by
Michael Benayoun
Committed by
GitHub
Nov 03, 2022
Browse files
Fixed torch.finfo issue with torch.fx (#20040)
parent
6f257bb3
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
31 additions
and
28 deletions
+31
-28
src/transformers/utils/fx.py
src/transformers/utils/fx.py
+28
-8
tests/test_modeling_common.py
tests/test_modeling_common.py
+3
-20
No files found.
src/transformers/utils/fx.py
View file @
9080607b
...
...
@@ -230,6 +230,15 @@ def torch_arange(*args, **kwargs):
return
torch
.
empty
((
end
-
start
)
//
step
,
dtype
=
dtype
,
device
=
"meta"
)
def
torch_full
(
*
args
,
**
kwargs
):
args
=
list
(
args
)
if
isinstance
(
args
[
1
],
torch
.
Tensor
)
and
args
[
1
].
device
==
torch
.
device
(
"meta"
):
args
[
1
]
=
1
# Any value.
kwargs_without_device
=
dict
(
kwargs
)
kwargs_without_device
.
pop
(
"device"
,
None
)
return
torch
.
full
(
*
args
,
**
kwargs_without_device
)
def
torch_cat
(
tensors
,
dim
=
None
,
axis
=
None
,
*
,
out
=
None
):
if
dim
is
None
and
axis
is
None
:
dim
=
0
...
...
@@ -509,6 +518,7 @@ _MANUAL_META_OVERRIDES: Dict[Callable, Callable] = {
torch
.
where
:
torch_where
,
torch
.
abs
:
torch_abs
,
torch
.
arange
:
torch_arange
,
torch
.
full
:
torch_full
,
torch
.
cat
:
torch_cat
,
torch
.
stack
:
torch_stack
,
torch
.
add
:
torch_add
,
...
...
@@ -552,12 +562,6 @@ class HFProxy(Proxy):
def
shape
(
self
):
return
self
.
tracer
.
create_proxy
(
"call_method"
,
"size"
,
(
self
,),
{})
@
property
def
dtype
(
self
):
if
hasattr
(
self
,
"_metadata"
)
and
self
.
_metadata
is
not
None
:
return
self
.
_metadata
.
dtype
return
self
.
tracer
.
create_proxy
(
"call_function"
,
builtins
.
getattr
,
(
self
,
"dtype"
),
{})
@
property
def
device
(
self
):
# Hack so we can track when devices are used. During meta-tensor propagation,
...
...
@@ -597,12 +601,15 @@ class HFAttribute(HFProxy):
self
.
tracer
=
root
.
tracer
self
.
_node
=
None
if
hasattr
(
self
.
root
,
"_metadata"
):
self
.
install_metadata
(
getattr
(
self
.
root
.
_metadata
,
attr
))
@
property
def
node
(
self
):
# the node for attributes is added lazily, since most will just be method calls
# which do not rely on the getitem call
if
self
.
_node
is
None
:
self
.
_node
=
self
.
tracer
.
create_proxy
(
"call_function"
,
getattr
,
(
self
.
root
,
self
.
attr
),
{}).
node
self
.
_node
=
self
.
tracer
.
create_proxy
(
"call_function"
,
builtins
.
getattr
,
(
self
.
root
,
self
.
attr
),
{}).
node
return
self
.
_node
def
__call__
(
self
,
*
args
,
**
kwargs
):
...
...
@@ -663,7 +670,18 @@ class HFTracer(Tracer):
# Feature flag for proxying accesses to buffer values
proxy_buffer_attributes
:
bool
=
True
allow_insert_stateless_mods
:
bool
=
True
_TORCH_METHODS_TO_PATCH
=
[
"arange"
,
"zeros"
,
"ones"
,
"full"
,
"full_like"
,
"eye"
,
"empty"
,
"tensor"
]
_TORCH_METHODS_TO_PATCH
=
[
"arange"
,
"zeros"
,
"ones"
,
"full"
,
"full_like"
,
"eye"
,
"empty"
,
"tensor"
,
"clamp"
,
"finfo"
,
]
def
__init__
(
self
,
autowrap_modules
=
(
math
,),
autowrap_functions
=
()):
...
...
@@ -737,6 +755,8 @@ class HFTracer(Tracer):
"GPT2DoubleHeadsModel"
,
]:
inputs_dict
[
"labels"
]
=
torch
.
zeros
(
shape
,
dtype
=
torch
.
long
,
device
=
device
)
elif
model_class_name
in
[
*
get_values
(
MODEL_FOR_CTC_MAPPING_NAMES
)]:
inputs_dict
[
"labels"
]
=
torch
.
zeros
(
shape
,
dtype
=
torch
.
float32
,
device
=
device
)
else
:
raise
NotImplementedError
(
f
"Generating the dummy input named
{
input_name
}
for
{
model_class_name
}
is not supported yet."
...
...
tests/test_modeling_common.py
View file @
9080607b
...
...
@@ -835,17 +835,14 @@ class ModelTesterMixin:
filtered_inputs
=
{
k
:
v
for
(
k
,
v
)
in
inputs
.
items
()
if
k
in
input_names
}
input_names
=
list
(
filtered_inputs
.
keys
())
model_output
=
model
(
**
filtered_inputs
)
if
(
isinstance
(
model
,
tuple
(
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
.
values
()))
and
not
hasattr
(
model
.
config
,
"problem_type"
)
or
model
.
config
.
problem_type
is
None
if
isinstance
(
model
,
tuple
(
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
.
values
()))
and
(
not
hasattr
(
model
.
config
,
"problem_type"
)
or
model
.
config
.
problem_type
is
None
):
model
.
config
.
problem_type
=
"single_label_classification"
traced_model
=
symbolic_trace
(
model
,
input_names
)
traced_output
=
traced_model
(
**
filtered_inputs
)
model_output
=
model
(
**
filtered_inputs
)
except
Exception
as
e
:
self
.
fail
(
f
"Couldn't trace module:
{
e
}
"
)
...
...
@@ -871,20 +868,6 @@ class ModelTesterMixin:
f
"traced
{
i
}
th output doesn't match model
{
i
}
th output for
{
model_class
}
"
,
)
# Test that the model can be TorchScripted
try
:
scripted
=
torch
.
jit
.
script
(
traced_model
)
except
Exception
as
e
:
self
.
fail
(
f
"Could not TorchScript the traced model:
{
e
}
"
)
scripted_output
=
scripted
(
**
filtered_inputs
)
scripted_output
=
flatten_output
(
scripted_output
)
for
i
in
range
(
num_outputs
):
self
.
assertTrue
(
torch
.
allclose
(
model_output
[
i
],
scripted_output
[
i
]),
f
"scripted
{
i
}
th output doesn't match model
{
i
}
th output for
{
model_class
}
"
,
)
# Test that the model can be serialized and restored properly
with
tempfile
.
TemporaryDirectory
()
as
tmp_dir_name
:
pkl_file_name
=
os
.
path
.
join
(
tmp_dir_name
,
"model.pkl"
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment