[BERT L6_H-512_A-8 model](https://huggingface.co/google/bert_uncased_L-6_H-512_A-8) fine-tuned on the [CORD-19 dataset](https://www.semanticscholar.org/cord19).
## CORD-19 data subset
The training data for this dataset is stored as a [Kaggle dataset](https://www.kaggle.com/davidmezzetti/cord19-qa?select=cord19.txt). The training
data is a subset of the full corpus, focusing on high-quality, study-design detected articles.
[bert-small-cord19-squad model](https://huggingface.co/NeuML/bert-small-cord19-squad2) fine-tuned on the [CORD-19 QA dataset](https://www.kaggle.com/davidmezzetti/cord19-qa?select=cord19-qa.json).
## CORD-19 QA dataset
The CORD-19 QA dataset is a SQuAD 2.0 formatted list of question, context, answer combinations covering the [CORD-19 dataset](https://www.semanticscholar.org/cord19).
## Building the model
```bash
python run_squad.py \
--model_type bert \
--model_name_or_path bert-small-cord19-squad \
--do_train\
--do_lower_case\
--version_2_with_negative\
--train_file cord19-qa.json \
--per_gpu_train_batch_size 8 \
--learning_rate 5e-5 \
--num_train_epochs 10.0 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir bert-small-cord19qa \
--save_steps 0 \
--threads 8 \
--overwrite_cache\
--overwrite_output_dir
```
## Testing the model
Example usage below:
```python
fromtransformersimportpipeline
qa=pipeline(
"question-answering",
model="NeuML/bert-small-cord19qa",
tokenizer="NeuML/bert-small-cord19qa"
)
qa({
"question":"What is the median incubation period?",
"context":"The incubation period is around 5 days (range: 4-7 days) with a maximum of 12-13 day"
})
qa({
"question":"What is the incubation period range?",
"context":"The incubation period is around 5 days (range: 4-7 days) with a maximum of 12-13 day"
})
qa({
"question":"What type of surfaces does it persist?",
"context":"The virus can survive on surfaces for up to 72 hours such as plastic and stainless steel ."