Unverified Commit 8e93dc7e authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Fix some doc examples in task summary (#16666)



* Fix some doc examples
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent 1025a9b7
...@@ -871,10 +871,10 @@ CNN / Daily Mail), it yields very good results. ...@@ -871,10 +871,10 @@ CNN / Daily Mail), it yields very good results.
... inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True ... inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True
... ) ... )
>>> print(tokenizer.decode(outputs[0])) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
<pad> prosecutors say the marriages were part of an immigration scam. if convicted, barrientos faces two criminal prosecutors say the marriages were part of an immigration scam. if convicted, barrientos faces two criminal
counts of "offering a false instrument for filing in the first degree" she has been married 10 times, nine of them counts of "offering a false instrument for filing in the first degree" she has been married 10 times, nine of them
between 1999 and 2002.</s> between 1999 and 2002.
``` ```
</pt> </pt>
<tf> <tf>
...@@ -890,8 +890,8 @@ between 1999 and 2002.</s> ...@@ -890,8 +890,8 @@ between 1999 and 2002.</s>
... inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True ... inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True
... ) ... )
>>> print(tokenizer.decode(outputs[0])) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
<pad> prosecutors say the marriages were part of an immigration scam. if convicted, barrientos faces two criminal prosecutors say the marriages were part of an immigration scam. if convicted, barrientos faces two criminal
counts of "offering a false instrument for filing in the first degree" she has been married 10 times, nine of them counts of "offering a false instrument for filing in the first degree" she has been married 10 times, nine of them
between 1999 and 2002. between 1999 and 2002.
``` ```
...@@ -943,8 +943,8 @@ Here is an example of doing translation using a model and a tokenizer. The proce ...@@ -943,8 +943,8 @@ Here is an example of doing translation using a model and a tokenizer. The proce
... ) ... )
>>> outputs = model.generate(inputs["input_ids"], max_length=40, num_beams=4, early_stopping=True) >>> outputs = model.generate(inputs["input_ids"], max_length=40, num_beams=4, early_stopping=True)
>>> print(tokenizer.decode(outputs[0])) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
<pad> Hugging Face ist ein Technologieunternehmen mit Sitz in New York und Paris.</s> Hugging Face ist ein Technologieunternehmen mit Sitz in New York und Paris.
``` ```
</pt> </pt>
<tf> <tf>
...@@ -960,8 +960,8 @@ Here is an example of doing translation using a model and a tokenizer. The proce ...@@ -960,8 +960,8 @@ Here is an example of doing translation using a model and a tokenizer. The proce
... ) ... )
>>> outputs = model.generate(inputs["input_ids"], max_length=40, num_beams=4, early_stopping=True) >>> outputs = model.generate(inputs["input_ids"], max_length=40, num_beams=4, early_stopping=True)
>>> print(tokenizer.decode(outputs[0])) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
<pad> Hugging Face ist ein Technologieunternehmen mit Sitz in New York und Paris. Hugging Face ist ein Technologieunternehmen mit Sitz in New York und Paris.
``` ```
</tf> </tf>
</frameworkcontent> </frameworkcontent>
...@@ -976,16 +976,22 @@ The following examples demonstrate how to use a [`pipeline`] and a model and tok ...@@ -976,16 +976,22 @@ The following examples demonstrate how to use a [`pipeline`] and a model and tok
```py ```py
>>> from transformers import pipeline >>> from transformers import pipeline
>>> from datasets import load_dataset
>>> import torch
>>> torch.manual_seed(42) # doctest: +IGNORE_RESULT
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> audio_file = dataset[0]["audio"]["path"]
>>> audio_classifier = pipeline( >>> audio_classifier = pipeline(
... task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition" ... task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... ) ... )
>>> audio_classifier("jfk_moon_speech.wav") >>> predictions = audio_classifier(audio_file)
[{'label': 'calm', 'score': 0.13856211304664612}, >>> predictions = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in predictions]
{'label': 'disgust', 'score': 0.13148026168346405}, >>> predictions
{'label': 'happy', 'score': 0.12635163962841034}, [{'score': 0.1315, 'label': 'calm'}, {'score': 0.1307, 'label': 'neutral'}, {'score': 0.1274, 'label': 'sad'}, {'score': 0.1261, 'label': 'fearful'}, {'score': 0.1242, 'label': 'happy'}]
{'label': 'angry', 'score': 0.12439591437578201},
{'label': 'fearful', 'score': 0.12404385954141617}]
``` ```
The general process for using a model and feature extractor for audio classification is: The general process for using a model and feature extractor for audio classification is:
...@@ -1017,6 +1023,7 @@ The general process for using a model and feature extractor for audio classifica ...@@ -1017,6 +1023,7 @@ The general process for using a model and feature extractor for audio classifica
>>> predicted_class_ids = torch.argmax(logits, dim=-1).item() >>> predicted_class_ids = torch.argmax(logits, dim=-1).item()
>>> predicted_label = model.config.id2label[predicted_class_ids] >>> predicted_label = model.config.id2label[predicted_class_ids]
>>> predicted_label >>> predicted_label
'_unknown_'
``` ```
</pt> </pt>
</frameworkcontent> </frameworkcontent>
...@@ -1029,10 +1036,15 @@ The following examples demonstrate how to use a [`pipeline`] and a model and tok ...@@ -1029,10 +1036,15 @@ The following examples demonstrate how to use a [`pipeline`] and a model and tok
```py ```py
>>> from transformers import pipeline >>> from transformers import pipeline
>>> from datasets import load_dataset
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> audio_file = dataset[0]["audio"]["path"]
>>> speech_recognizer = pipeline(task="automatic-speech-recognition", model="facebook/wav2vec2-base-960h") >>> speech_recognizer = pipeline(task="automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
>>> speech_recognizer("jfk_moon_speech.wav") >>> speech_recognizer(audio_file)
{'text': "PRESENTETE MISTER VICE PRESIDENT GOVERNOR CONGRESSMEN THOMAS SAN O TE WILAN CONGRESSMAN MILLA MISTER WEBB MSTBELL SCIENIS DISTINGUISHED GUESS AT LADIES AND GENTLEMAN I APPRECIATE TO YOUR PRESIDENT HAVING MADE ME AN HONORARY VISITING PROFESSOR AND I WILL ASSURE YOU THAT MY FIRST LECTURE WILL BE A VERY BRIEF I AM DELIGHTED TO BE HERE AND I'M PARTICULARLY DELIGHTED TO BE HERE ON THIS OCCASION WE MEED AT A COLLEGE NOTED FOR KNOWLEGE IN A CITY NOTED FOR PROGRESS IN A STATE NOTED FOR STRAINTH AN WE STAND IN NEED OF ALL THREE"} {'text': 'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'}
``` ```
The general process for using a model and processor for automatic speech recognition is: The general process for using a model and processor for automatic speech recognition is:
...@@ -1063,6 +1075,7 @@ The general process for using a model and processor for automatic speech recogni ...@@ -1063,6 +1075,7 @@ The general process for using a model and processor for automatic speech recogni
>>> transcription = processor.batch_decode(predicted_ids) >>> transcription = processor.batch_decode(predicted_ids)
>>> transcription[0] >>> transcription[0]
'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'
``` ```
</pt> </pt>
</frameworkcontent> </frameworkcontent>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment