Unverified Commit 8a3cfaac authored by Maciej Torhan's avatar Maciej Torhan Committed by GitHub
Browse files

Fix AutoformerForPrediction example code (#29639)



Removed static_real_features from AutoformerForPrediction example code
Signed-off-by: default avatarMaciej Torhan <maciek97x@gmail.com>
parent c1993e68
...@@ -1853,7 +1853,6 @@ class AutoformerForPrediction(AutoformerPreTrainedModel): ...@@ -1853,7 +1853,6 @@ class AutoformerForPrediction(AutoformerPreTrainedModel):
... past_time_features=batch["past_time_features"], ... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"], ... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"], ... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_values=batch["future_values"], ... future_values=batch["future_values"],
... future_time_features=batch["future_time_features"], ... future_time_features=batch["future_time_features"],
... ) ... )
...@@ -1869,12 +1868,54 @@ class AutoformerForPrediction(AutoformerPreTrainedModel): ...@@ -1869,12 +1868,54 @@ class AutoformerForPrediction(AutoformerPreTrainedModel):
... past_time_features=batch["past_time_features"], ... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"], ... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"], ... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_time_features=batch["future_time_features"], ... future_time_features=batch["future_time_features"],
... ) ... )
>>> mean_prediction = outputs.sequences.mean(dim=1) >>> mean_prediction = outputs.sequences.mean(dim=1)
```""" ```
<Tip>
The AutoformerForPrediction can also use static_real_features. To do so, set num_static_real_features in
AutoformerConfig based on number of such features in the dataset (in case of tourism_monthly dataset it
is equal to 1), initialize the model and call as shown below:
```
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import AutoformerConfig, AutoformerForPrediction
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> # check number of static real features
>>> num_static_real_features = batch["static_real_features"].shape[-1]
>>> # load configuration of pretrained model and override num_static_real_features
>>> configuration = AutoformerConfig.from_pretrained(
... "huggingface/autoformer-tourism-monthly",
... num_static_real_features=num_static_real_features,
... )
>>> # we also need to update feature_size as it is not recalculated
>>> configuration.feature_size += num_static_real_features
>>> model = AutoformerForPrediction(configuration)
>>> outputs = model(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_values=batch["future_values"],
... future_time_features=batch["future_time_features"],
... )
```
</Tip>
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if future_values is not None: if future_values is not None:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment